Model reduction: Balanced truncation

1/ Antoulas, A. C. (2005). Approximation of large-scale dynamical systems (Vol. 6). Siam.
2/ Rowley, C. W. (2005). Model reduction for fluids, using balanced proper orthogonal decomposition. International Journal of Bifurcation and Chaos,15(03), 997-1013.
3/ Barbagallo, A., Sipp, D., \& Schmid, P. J. (2009). Closed-loop control of an open cavity flow using reduced-order models. Journal of Fluid Mechanics, 641, 1-50.
4/ Ma, Z., Ahuja, S., \& Rowley, C. W. (2011). Reduced-order models for control of fluids using the eigensystem realization algorithm. Theoretical and Computational Fluid Dynamics, 25(1-4), 233-247.

Outline

- Description of problem
- Discrete time systems
- Controllability
- Observability
- Change of basis
- Balanced representations
- How to obtain balanced representations?
- Balanced truncation
$>$ Error bounds
> Stability
- ERA

Description of problem

Non-linear dynamics with one input and one output:

$$
\left\{\begin{array}{c}
\partial_{t} w=\mathcal{A}(w)+\mathcal{B}(u) \\
y=\mathcal{C}(w)
\end{array}\right.
$$

Fixed point:

$$
\mathcal{A}\left(w_{0}\right)+\mathcal{B}(0)=0
$$

Dynamics around fixed point:

$$
\left\{\begin{array}{c}
w(t):=w_{0}+\varepsilon w(t) \\
u(t):=0+\varepsilon u(t) \\
y(t):=\mathcal{C}\left(w_{0}\right)+\epsilon y(t)
\end{array}\right.
$$

Linearization:

$$
\left\{\begin{array}{c}
\varepsilon \partial_{t} w=\mathcal{A}\left(w_{0}\right)+\varepsilon A w+\mathcal{B}(0)+\varepsilon B u \\
\mathcal{C}\left(w_{0}\right)+\epsilon y(t)=\mathcal{C}\left(w_{0}\right)+\varepsilon C w
\end{array}\right.
$$

Linear-Time-Invariant model:

$$
\left\{\begin{array}{c}
\partial_{t} w=A w+B u \\
y=C w \\
\text { Model reduction }
\end{array}\right.
$$

Description of problem

- Continuous model (PDE): $\partial_{t} w$
\downarrow Spatial discretization
- Large-dimensional model obtained after spatial discretization (ODE): $d_{t} w$
\downarrow Model reduction
- Reduced-order model (ODE)

Description of problem

Let us consider the following large-scale (dimension n) single-input singleoutput (SISO) problem:

$$
\begin{gathered}
d_{t} w=A w+B u \\
y=C w
\end{gathered}
$$

where A is stable.
Solution:

$$
y(t)=C e^{A\left(t-t_{0}\right)} w_{I}+\int_{t_{0}}^{t} C e^{A(t-\tau)} B u(\tau) d \tau
$$

If $t_{0} \rightarrow-\infty$ and $w_{I}=0$:

$$
y(t)=\int_{-\infty}^{t} Z(t-\tau) u(\tau) d \tau
$$

where:

$$
Z(t)=C e^{A t} B, t \geq 0
$$

Dynamics from input to output is fully characterized by $Z(t)$

Description of problem: impulse response

$Z(t)$ corresponds to the impulse response of the system.
The impulse response of the system is defined as follows: let us consider the system driven by $u(t)=\delta(t)$, with the initial condition $\mathrm{w}\left(0^{-}\right)=w_{I}=0$. The solution is given by:

$$
\Rightarrow y(t)=C e^{A t} B=Z(t) \text { for } t \geq 0
$$

Proof:

$$
\begin{gathered}
\int_{0^{-}}^{0^{+}}\left(d_{t} w\right) d t=\int_{0^{-}}^{0^{+}}(A w+B u) d t \\
{[w]_{0^{-}}^{0^{+}}=0+B \int_{0^{-}}^{0^{+}}(\delta(t)) d t} \\
w\left(0^{+}\right)-w_{I}=B
\end{gathered}
$$

Finally:

$$
w(t)=e^{A t} B \text { and } y(t)=C e^{A t} B
$$

Description of problem: transfer function

The transfer function $T_{y u}(i \omega)$ between u and y is obtained by considering the frequency domain: $u(t)=e^{i \omega t} \hat{u}, w(t)=e^{i \omega t} \widehat{w}, y(t)=e^{i \omega t} \hat{y}$. It corresponds to the ratio of \hat{y} and \hat{u} :

$$
T_{y u}(i \omega)=\frac{\hat{y}}{\hat{u}}=C(i \omega I-A)^{-1} B
$$

It may be shown that $T_{y u}(i \omega)$ is equal to the Fourier transform of $Z(t)$:

$$
T_{y u}(i \omega)=\widehat{Z}(i \omega)=\int_{-\infty}^{+\infty} e^{-i \omega t} Z(t) d t
$$

Proof:
An eigenvalue decomposition of $A=V \Lambda V^{-1}$ yields:

$$
Z(t)=C e^{A t} B=C V e^{\Lambda t} V^{-1} B
$$

Therefore:

$$
\begin{aligned}
& \widehat{Z}(i \omega)=\int_{-\infty}^{+\infty} e^{-i \omega t} Z(t) d t=\int_{0}^{+\infty} e^{-i \omega t} Z(t) d t=C V\left[\int_{0}^{+\infty} e^{(\Lambda-i \omega I) t} d t\right] V^{-1} B= \\
& C V\left[(\Lambda-i \omega I)^{-1} e^{(\Lambda-i \omega I) t}\right]_{0}^{+\infty} V^{-1} B=-C V(\Lambda-i \omega I)^{-1} V^{-1} B=C(i \omega I-A)^{-1} B=T_{y u}(i \omega)
\end{aligned}
$$

Description of problem

Reduced-Order-Modelling consists in finding a small-scale system:

$$
\left\{\begin{array}{c}
d_{t} w_{r}=A_{r} w_{r}+B_{r} u \\
y=C_{r} w_{r}
\end{array}\right.
$$

which preserves these curves.
In particular,

$$
\begin{gathered}
C e^{A t} B \approx C_{r} e^{A_{r} t} B_{r} \forall t \geq 0 \\
C(i \omega I-A)^{-1} B \approx C_{r}\left(i \omega I-A_{r}\right)^{-1} B_{r} \forall \omega
\end{gathered}
$$

Description of problem

What does preserve mean?
Let us introduce the following norms to quantify the input-output relation:
1 / The 2 -norm:

$$
\|Z\|_{2}=\sqrt{\int_{0}^{+\infty} Z(t)^{2} d t} \underset{\text { Parseval }}{=} \sqrt{\frac{1}{2 \pi} \int_{-\infty}^{+\infty}\left|T_{y u}(i \omega)\right|^{2} d \omega}
$$

2/ The ∞-norm:

$$
\|Z\|_{\infty}=\max _{\omega}\left|T_{y u}(i \omega)\right|=\max _{u(t)} \frac{\sqrt{\int_{0}^{+\infty} y(t)^{2} d t}}{\sqrt{\int_{0}^{+\infty} u(t)^{2} d t}}
$$

Preserve means that we should find Z_{r} such that $\left\|Z-Z_{r}\right\|$ is minimal in one of the chosen norms.

Outline

- Description of problem
- Discrete time systems
- Controllability
- Observability
- Change of basis
- Balanced representations
- How to obtain balanced representations?
- Balanced truncation
$>$ Error bounds
> Stability
- ERA

Discrete time systems

Discrete time system:

$$
\begin{gathered}
w(k+1)=A w(k)+B u(k) \\
y(k)=C w(k)
\end{gathered}
$$

Link between continuous time and discrete time systems:
Integration of linearized Navier-Stokes equations over sampling time Δt (with control signal constant over t and $t+\Delta t$)

$$
w(t+\Delta t)=\underbrace{e^{A \Delta t}}_{\text {new } A} w(t)+\underbrace{\int_{0}^{\Delta t} e^{A(\Delta t-\tau)} B d \tau}_{\text {new } B} u(t)
$$

Note that the sampling time Δt may be large!
Solution (for $w(0)=0$):

$$
y(k)=\sum_{j=0}^{k-1} Z(k-j) u(j)
$$

Where $Z(k)$ designates the impulse response of the system (A, B, C) :

$$
Z(k)=C A^{k-1} B, k \geq 1
$$

Discrete time systems

Impulse response:
Z_{k} correponds to the solution with the following driving terms:

$$
\begin{gathered}
u(0)=1, u(k \geq 1)=0 \\
w(0)=0
\end{gathered}
$$

Then:

$$
\begin{gathered}
k=0, u=1, w=0, y=0 \\
k=1, u=0, w=B, y=C B \\
k=2, u=0, w=A B, y=C A B \\
k=3, u=0, w=A^{2} B, y=C A^{2} B \\
\Rightarrow k, u=0, w=A^{k-1} B, y=C A^{k-1} B
\end{gathered}
$$

Discrete time systems

Transfer function:
Let us consider a mode, an excitation and a measurement of period n (which corresponds to a time-period $T=n \Delta t \Rightarrow \omega=\frac{2 \pi}{n \Delta t}$):

$$
u(k)=e^{\frac{2 \pi i k}{n}} \hat{u}, w(k)=e^{\frac{2 \pi i k}{n}} \widehat{w}, y(k)=e^{\frac{2 \pi i k}{n}} \hat{y}
$$

Introducing the notation $z=e^{\frac{2 \pi i}{n}}\left(=e^{i \omega \Delta t}\right)$, the transfer function from u to y is:

$$
T_{y u}(z)=\frac{\hat{y}}{\hat{u}}=C(z I-A)^{-1} B
$$

Proof:

$$
\begin{gathered}
w(k+1)=A w(k)+B u(k) \Rightarrow e^{\frac{2 \pi i}{\frac{2 \pi}{n}}} \widehat{w}=A \widehat{w}+B \hat{u} \\
\Rightarrow \widehat{w}=(z I-A)^{-1} B \hat{u}
\end{gathered}
$$

It may be shown that:

$$
T_{y u}(z)=Z(1) z^{-1}+Z(2) z^{-2}+Z(3) z^{-3}+Z(4) z^{-4}+\cdots
$$

where: $Z(k)=C A^{k-1} B$ is the impulse response of the system.

$$
\begin{gathered}
T_{y u}(z)=\frac{\hat{y}}{\hat{u}}=C(z I-A)^{-1} B \\
=C z^{-1}\left(I+A z^{-1}+A^{2} z^{-2}+A^{3} z^{-3}+\cdots\right) B(\text { since } A \text { is stable }) \\
=C B z^{-1}+C A B z^{-2}+C A^{2} B z^{-3}+C A^{3} B z^{-4}+\cdots \\
\approx Z(1) z^{-1}+Z(2) z^{-2}+Z(3) z^{-3}+Z(4) z^{-4}+\cdots
\end{gathered}
$$

Discrete time systems

Norms of system (A, B, C) in discrete time:
1/2-norm:

$$
\|Z\|_{2}=\sqrt{\sum_{k=0}^{\infty} Z(k)^{2}}
$$

2/ ∞-norm:

$$
\left|\left|Z \|_{\infty}=\max _{z=e^{\frac{2 \pi i}{n}, n \geq 1}}\right| T_{y u}(z)\right|
$$

Discrete time systems

Continuous time

Outline

- Description of problem
- Discrete time systems
- Controllability
- Observability
- Change of basis
- Balanced representations
- How to obtain balanced representations?
- Balanced truncation
$>$ Error bounds
> Stability
- ERA

Controllability

Definition: Given a system (A, B) of dimension n, a state w is reachable if there exists an input $u(k)$ of finite energy and a time m such that under that input and zero initial condition, the state of the system becomes w :

$$
w(m)=\underbrace{A^{m} w_{I}}_{0}+\sum_{k=0}^{m-1} A^{m-k-1} B u(k)
$$

Definition: the reachable subspace is the set containing all the reachable states of the system

Definition: $\mathcal{R}(A, B)=\left[B, A B, \cdots, A^{k} B, \cdots\right]$ is the reachability matrix.
Definition: $\mathcal{R}_{m}(A, B)=\left[B, A B, \cdots, A^{m-1} B\right]$
Theorem: the reachable subspace corresponds to $\operatorname{im} \mathcal{R}(A, B)$ (or the span of the columns of $\mathcal{R}(A, B)$).

Definition: The system (A, B) is completely reachable if the reachable subspace is the full space, i.e. $\operatorname{rank} \mathcal{R}(A, B)=n$.

controilability

Definition:

The controllability Gramian at horizon m is the matrix:

$$
G_{c}=\mathcal{R}_{m}(A, B)\left[\mathcal{R}_{m}(A, B)\right]^{*}=\sum_{k=0}^{m-1} A^{k} B B^{*} A^{* k}
$$

Properties of G_{C} :
$1 / G_{c}$ is an n by n symmetric positive matrix: $w^{*} G_{c} w \geq 0 \forall w$.
$2 / \operatorname{im} G_{c}=\operatorname{im} \mathcal{R}(A, B)$ for $m \geq n$
3/ (A, B) is fully reachable if and only if the kernel of G_{c} is the null space for some m
4/ If (A, B) is fully reachable, then the minimum energy to reach w over control horizon $[0, m]$ is $w^{*} G_{c}^{-1} w . w$ is a controllable state if this quantity is small.

Controllability

Proof of $1 / G_{c}^{*}=G_{c}$

$$
w^{*} G_{c} w=\sum_{k=0}^{m-1} w^{*} A^{k} B B^{*} A^{* k} w=\sum_{k=0}^{m-1}\left|B^{*} A^{* k} w\right|^{2} \geq 0
$$

Proof of 3/ $\operatorname{dim~im~} G_{c}+\operatorname{dim} \operatorname{Ker} G_{c}=n$

Controllability

Proof of $4 /$ for any state w_{f}, there exists a state ξ such that

$$
w_{f}=G_{c} \xi
$$

Let us consider at time m the state obtained with the control law

$$
u(k)=B^{*} A^{* m-k-1} \xi
$$

and the initial state $w(0)=w_{I}=0$. Then:

$$
\begin{aligned}
w(m)= & \underbrace{A^{m} w_{I}}_{0}+\sum_{k=0}^{m-1} A^{m-k-1} B u(k) \\
& =\sum_{k=0}^{m-1} A^{m-k-1} B B^{*} A^{* m-k-1} \xi \underbrace{}_{k^{\prime}=m-1-k} \underbrace{\sum_{k^{\prime}=0}^{m-1} A^{k^{\prime}} B B^{*} A^{* k^{\prime}}}_{G_{c}} \xi=w_{f}
\end{aligned}
$$

The energy cost related to this law is:

$$
\begin{gathered}
\sum_{k=0}^{m-1} u(k)^{*} u(k)=\sum_{k=0}^{m-1} \xi^{*} A^{m-k-1} B B^{*} A^{* m-k-1} \xi=\xi^{*} G_{c} \xi=\left(G_{c}^{-1} w_{f}\right)^{*} G_{c} G_{c}^{-1} w_{f} \\
=w_{f}^{*} G_{c}^{-1} w_{f}
\end{gathered}
$$

controilability

If $m \rightarrow \infty$, the infinite controllability Gramian is:

$$
G_{c}^{\infty}=\sum_{k=0}^{\infty} A^{k} B B^{*} A^{* k}
$$

G_{c}^{∞} is solution of a discrete Lyapunov equation:

$$
A G_{c}^{\infty} A^{*}-G_{c}^{\infty}+B B^{*}=0
$$

Proof:

$$
\begin{gathered}
G_{c}^{\infty}=\sum_{k=0}^{\infty} A^{k} B B^{*} A^{* k}=B B^{*}+\sum_{k=1}^{\infty} A^{k} B B^{*} A^{* k} \\
=B B^{*}+A \underbrace{\left(\sum_{k=1}^{\infty} A^{k-1} B B^{*} A^{* k-1}\right)}_{G_{c}^{\infty}} A^{*}
\end{gathered}
$$

So:

$$
G_{c}^{\infty}=B B^{*}+A G_{c}^{\infty} A^{*}
$$

Outline

- Description of problem
- Discrete time systems
- Controllability
- Observability
- Change of basis
- Balanced representations
- How to obtain balanced representations?
- Balanced truncation
$>$ Error bounds
> Stability
- ERA

Observability

Definition: Given a system (A, C) of dimension n, a state w is unobservable if for all $k \geq 0, C A^{k} w=0$.

Definition: the unobservable subspace is the set containing all the unobservable states of the system.

Definition: $\mathcal{O}(C, A)=\left[\begin{array}{c}C \\ C A \\ \vdots \\ C A^{k} \\ \vdots\end{array}\right]$ is the observability matrix.
Definition: $\mathcal{O}_{m}(C, A)=\left[\begin{array}{c}C \\ C A \\ \vdots \\ C A^{m-1}\end{array}\right]$
Theorem: the unobservable subspace corresponds to $\operatorname{ker} \mathcal{O}(C, A)$

Observability

Definition: For a stable system, the observability Gramian at horizon m is

$$
G_{o}=\left[\mathcal{O}_{m}(C, A)\right]^{*} \mathcal{O}_{m}(C, A)=\sum_{k=0}^{m-1} A^{* k} C^{*} C A^{k}
$$

Properties:
$1 / G_{o}$ is an n by n symmetric positive semi-definite matrix:

$$
w^{*} G_{o} w=\sum_{k=0}^{m-1}\left|C A^{k} w\right|^{2} \geq 0 \forall w
$$

2/ $\operatorname{ker} \mathcal{O}(C, A)=\operatorname{ker} G_{o}$ for $m \geq n$ (the unobservable subspace is the kernel of the observability Gramian).

3/ The energy produced by observing the output of the system corresponding to an initial state w over time horizon $[0, m]$ is $w^{*} G_{o} w . w$ is an observable state if this quantity is large.

Observability

The inifinite observability Gramian G_{o}^{∞}

$$
G_{o}^{\infty}=\sum_{k=0}^{\infty} A^{* k} C^{*} C A^{k}
$$

is solution of a discrete Lyapunov equation :

$$
A^{*} G_{o}^{\infty} A-G_{o}^{\infty}+C^{*} C=0
$$

Outline

- Description of problem
- Discrete time systems
- Controllability
- Observability
- Change of basis
- Balanced representations
- How to obtain balanced representations?
- Balanced truncation
$>$ Error bounds
> Stability
- ERA

Change of basis

If $w=T w_{r}$, then

$$
\left\{\begin{array}{c}
w_{r}(k+1)=\overbrace{T^{-1} A T}^{A_{r}} w_{r}(k)+\overbrace{T^{-1} B}^{B_{r}} u(k) \\
y(k)=\underbrace{C T}_{C_{r}} w_{r}(k)
\end{array}\right.
$$

Then:

$$
\begin{gathered}
G_{c r}=\sum_{k=0}^{m-1} A_{r}^{k} B_{r} B_{r}^{*} A_{r}^{* k}=\sum_{k=0}^{m-1} T^{-1} A^{k} T T^{-1} B B^{*} T^{-1 *} T^{*} A^{* k} T^{*-1} \\
=T^{-1} \underbrace{\sum_{k=0}^{m-1} A^{k} B B^{*} A^{* k} T^{*-1}}_{G_{c}} \\
G_{o r}=\sum_{k=0}^{m-1} A_{r}^{* k} C_{r}^{*} C_{r} A_{r}^{k}=T^{*} \underbrace{\sum_{k=0}^{m-1} A^{* k} C^{*} C A^{k}}_{G_{o}} T
\end{gathered}
$$

Change of basis

Theorem:
Under a change of basis, the product of the two Gramians becomes:

$$
G_{c r} G_{o r}=T^{-1} G_{c} G_{o} T
$$

The EVD of $G_{c} G_{o}$ therefore yields a basis T in which $G_{c r} G_{o r}$ is a diagonal matrix.
Proof:

$$
G_{c r} G_{o r}=T^{-1} G_{c} T^{*-1} \mathrm{~T}^{*} \mathrm{G}_{\mathrm{o}} \mathrm{~T}=T^{-1} G_{c} G_{o} T
$$

The EVD of $G_{c} G_{o}$ yields:

$$
G_{c} G_{o}=T \Sigma T^{-1}
$$

Then, in this basis:

$$
G_{c r} G_{o r}=T^{-1} T \Sigma T^{-1} \mathrm{~T}=\Sigma
$$

Outline

- Description of problem
- Discrete time systems
- Controllability
- Observability
- Change of basis
- Balanced representations
- How to obtain balanced representations?
- Balanced truncation
$>$ Error bounds
> Stability
- ERA

Balancedrepresentations

We look for states: That are easy to reach / That are easy to observe. We would like to remove states: That are difficult to reach / That are difficult to observe.

Definition: A system (A, B, C) of dimension n is balanced if the controllability and observability Gramians are equal and diagonal:

$$
G_{c}=G_{o}=\left(\begin{array}{ccc}
\sigma_{1} & 0 & 0 \\
0 & \ddots & 0 \\
0 & 0 & \sigma_{n}
\end{array}\right)
$$

with $\sigma_{1} \geq \sigma_{2} \geq \cdots \geq \sigma_{n}$. These coefficients are the Hankel singular values. The vectors (e_{i}) of this basis verify:

$$
\begin{aligned}
e_{i}^{*} G_{c}^{-1} e_{i} & =\frac{1}{\sigma_{i}} \\
e_{i}^{*} G_{o} e_{i} & =\sigma_{i}
\end{aligned}
$$

Hence: e_{1} has minimal reachability energy and maximal observability energy. e_{n} has maximal reachability energy and minimal observability energy.

Outline

- Description of problem
- Discrete time systems
- Controllability
- Observability
- Change of basis
- Balanced representations
- How to obtain balanced representations?
- Balanced truncation
$>$ Error bounds
> Stability
- ERA

How to obtain balanced representations?

Algorithm of Laub et al. 1987
1/ Factor G_{c} and G_{o} such that: $G_{c}=X X^{*}$ and $G_{o}=Y Y^{*}$
2/ Perform the SVD of the cross-Gramian:

$$
Y^{*} X=U \Sigma V^{*}, V^{*} V=U^{*} U=I
$$

The diagonal elements of $\Sigma\left(\Sigma_{j}\right)$ are the Hankel singular values.
3/ Compute the bases: $T=X V \Sigma^{-\frac{1}{2}}$ and $S=Y U \Sigma^{-\frac{1}{2}}$.
These bases are bi-orthogonal: $S^{*} T=I$
T provides a balanced system: $\mathrm{G}_{c r}=T^{-1} G_{c} T^{*-1}=\Sigma, G_{o r}=T^{*} G_{o} T=\Sigma$
4/ $G_{c} G_{o} \mathrm{~T}=\mathrm{T} \mathrm{\Sigma} \Sigma^{2}$
Proof:

$$
\begin{aligned}
& S^{*} T=\Sigma^{-\frac{1}{2}} U^{*} Y^{*} X V \Sigma^{-\frac{1}{2}}=\Sigma^{-\frac{1}{2}} U^{*} U \Sigma V^{*} V \Sigma^{-\frac{1}{2}}=I \\
& T^{-1} G_{C} T^{*-1}=\Sigma^{-\frac{1}{2}} U^{*} Y^{*} X X^{*} Y U \Sigma^{-\frac{1}{2}}=\Sigma^{-\frac{1}{2}} U^{*} U \Sigma V^{*} V \Sigma U^{*} U \Sigma^{-\frac{1}{2}}=\Sigma \\
& T^{*} G_{o} T=\Sigma^{-\frac{1}{2}} V^{*} X^{*} Y Y^{*} X V \Sigma^{-\frac{1}{2}}=\Sigma^{-\frac{1}{2}} V^{*} V \Sigma U^{*} U \Sigma V^{*} V \Sigma^{-\frac{1}{2}}=\Sigma \\
& G_{c} G_{o} \mathrm{~T}=X X^{*} Y Y^{*} X V \Sigma^{-\frac{1}{2}}=X V \Sigma U^{*} U \Sigma V^{*} V \Sigma^{-\frac{1}{2}}=T \Sigma^{2}
\end{aligned}
$$

Outline

- Description of problem
- Discrete time systems
- Controllability
- Observability
- Change of basis
- Balanced representations
- How to obtain balanced representations?
- Balanced truncation
$>$ Error bounds
$>$ Stability
- ERA

Balanced system/Balanced truncation

The balanced system is:

$$
\left\{\begin{array}{c}
w_{r}(k+1)=A_{r} w_{r}(k)+B_{r} u(k) \\
y(k)=C_{r} w_{r}(k)
\end{array}\right.
$$

with $A_{r}=S^{*} A T, B_{r}=S^{*} B, C_{r}=C T$
The balanced system may be rewritten as (the subscript 1 and 2 denoting respectively a subspace of dimension p and $n-p$):

$$
\begin{gathered}
{\left[\begin{array}{l}
w_{r 1}(k+1) \\
w_{r 2}(k+1)
\end{array}\right]=\left[\begin{array}{ll}
A_{r 11} & A_{r 12} \\
A_{r 21} & A_{r 22}
\end{array}\right]\left[\begin{array}{l}
w_{r 1}(k) \\
w_{r 2}(k)
\end{array}\right]+\left[\begin{array}{l}
B_{r 1} \\
B_{r 2}
\end{array}\right] u(k)} \\
y(k)=\left[\begin{array}{ll}
C_{r 1} & C_{r 2}
\end{array}\right]\left[\begin{array}{l}
w_{r 1}(k) \\
w_{r 2}(k)
\end{array}\right]
\end{gathered}
$$

The truncated system is:

$$
\begin{gathered}
w_{r 1}(k+1)=A_{r 11} w_{r 1}(k)+B_{r 1} u(k) \\
y(k)=C_{r 1} w_{r 1}(k)
\end{gathered}
$$

The impulse response $Z_{p}(k)=C_{r 1} A_{r 11}^{k-1} B_{r 1}$ and tranfer-function $T_{y u, p}(z)=C_{r 1}\left(z I_{r}-A_{r 11}\right)^{-1} B_{r 1}$ are close to the initial ones: $Z(k)=C A^{k-1} B$ and $T_{y u}(z)=C(z I-A)^{-1} B$.

Balanced truncation: error bounds

Error bounds:
With infinite Gramians, we have:

$$
\Sigma_{p+1}<\left\|Z-Z_{p}\right\|_{\infty}<2 \sum_{j=p+1}^{n} \Sigma_{j}
$$

where Σ_{j} are the Hankel singular values.
Proof:
see Antoulas 2005.

Balanced truncation:

stability

Stability:
Any reduced (truncated) system $A_{r 11}$ obtained by balanced truncation (with infinite Gramians) is stable.

Proof:
In the balanced basis, the infinite controllability Gramian verifies:

$$
\begin{gathered}
A G_{c}^{\infty} A^{*}-G_{c}^{\infty}+B B^{*}=0 \\
\Rightarrow\left[\begin{array}{cc}
A_{r 11} & A_{r 12} \\
A_{r 21} & A_{r 22}
\end{array}\right]\left[\begin{array}{cc}
\Sigma_{1} & 0 \\
0 & \Sigma_{2}
\end{array}\right]\left[\begin{array}{cc}
A_{r 11}^{*} & A_{r 21}^{*} \\
A_{r 12}^{*} & A_{r 22}^{*}
\end{array}\right]-\left[\begin{array}{cc}
\Sigma_{1} & 0 \\
0 & \Sigma_{2}
\end{array}\right]+\left[\begin{array}{l}
B_{r 1} \\
B_{r 2}
\end{array}\right]\left[\begin{array}{ll}
B_{r 1}^{*} & B_{r 2}^{*}
\end{array}\right]=0 \\
{\left[\begin{array}{cc}
A_{r 11} & A_{r 12} \\
A_{r 21} & A_{r 22}
\end{array}\right]\left[\begin{array}{cc}
\Sigma_{1} & 0 \\
0 & \Sigma_{2}
\end{array}\right]\left[\begin{array}{cc}
A_{r 11}^{*} & A_{r 21}^{*} \\
A_{r 12}^{*} & A_{r 22}^{*}
\end{array}\right]=\left[\begin{array}{cc}
A_{r 11} & A_{r 12} \\
A_{r 21} & A_{r 22}
\end{array}\right]\left[\begin{array}{ll}
\Sigma_{1} A_{r 11}^{*} & \Sigma_{1} A_{r 21}^{*} \\
\Sigma_{2} A_{r 12}^{*} & \Sigma_{2} A_{r 22}^{*}
\end{array}\right]} \\
=\left[\begin{array}{cc}
A_{r 11} \Sigma_{1} A_{r 11}^{*}+A_{r 12} \Sigma_{2} A_{r 12}^{*} & ? \\
?
\end{array}\right]
\end{gathered}
$$

Balanced truncation: stability

The upper left block is:

$$
A_{r 11} \Sigma_{1} A_{r 11}^{*}+A_{r 12} \Sigma_{2} A_{r 12}^{*}-\Sigma_{1}+B_{r 1} B_{r 1}^{*}=0
$$

Consider an eigenvalue/eigenvector:

$$
A_{r 11}^{*} w=\lambda w
$$

Then:

$$
\begin{aligned}
& w^{*} A_{r 11} \Sigma_{1} A_{r 11}^{*} w+w^{*} A_{r 12} \Sigma_{2} A_{r 12}^{*} w-w^{*} \Sigma_{1} w+w^{*} B_{r 1} B_{r 1}^{*} w \\
& =\underbrace{\left(|\lambda|^{2}-1\right)}_{=\sigma<0} \underbrace{w^{*} \Sigma_{1} w}_{>0} \underbrace{+w^{*} A_{r 12} \Sigma_{2} A_{r 12}^{*} w}_{>0} \underbrace{w^{*} B_{r 1} B_{r 1}^{*} w}_{>0}=0
\end{aligned}
$$

Outline

- Description of problem
- Discrete time systems
- Controllability
- Observability
- Change of basis
- Balanced representations
- How to obtain balanced representations?
- Balanced truncation
$>$ Error bounds
> Stability
- ERA

Eigensystem Realization Algorithm (ERA)

1/ Gramians may be factored as $G_{c}=X X^{*}, G_{o}=Y Y^{*}$ with:

$$
\begin{gathered}
X=\mathcal{R}_{m}(A, B)=\left[B, A B, \cdots, A^{m-1} B\right] \\
Y=\left[\mathcal{O}_{m}(C, A)\right]^{*}=\left[C^{*}, A^{*} C^{*}, \cdots,\left(A^{*}\right)^{m-1} C^{*}\right]
\end{gathered}
$$

$2 / Y^{*} X=\left[\begin{array}{c}C \\ C A \\ C A^{2} \\ \vdots\end{array}\right]\left[\begin{array}{llll}B & A B & A^{2} B & \cdots\end{array}\right]=\left[\begin{array}{ccc}C B & C A B & \cdots \\ C A B & C A^{2} B & \ldots \\ \vdots & \vdots & \ddots\end{array}\right]=\left[\begin{array}{ccc}Z(1) & Z(2) & \cdots \\ Z(2) & Z(3) & \cdots \\ \vdots & \vdots & \ddots\end{array}\right]$
Can be obtained just from impulse response $Z(k)=C A^{k-1} B$.
2/Perform SVD of $Y^{*} X$:

$$
Y^{*} X=U \Sigma V^{*} \approx U_{r} \Sigma_{r} V_{r}^{*}, U_{r}^{*} U_{r}=V_{r}^{*} V_{r}=I
$$

3/ Compute bases: $T=X V_{r} \Sigma_{r}^{-\frac{1}{2}}$ and $S=Y U_{r} \Sigma_{r}^{-\frac{1}{2}}$
4/ The balanced system is:

$$
\left\{\begin{array}{c}
w_{r}(k+1)=A_{r} w_{r}(k)+B_{r} u(k) \\
y(k)=C_{r} w_{r}(k)
\end{array}\right.
$$

With $A_{r}=S^{*} A T, B_{r}=S^{*} B, C_{r}=C T$
Can we obtain $\left(A_{r}, B_{r}, C_{r}\right)$ just from impulse response $Z(k)$?

Eigensystem Realization Algorithm (ERA)

$1 / A_{r}=S^{*} A T=\Sigma_{r}^{-\frac{1}{2}} U_{r}^{*} Y^{*} A X V_{r} \Sigma_{r}^{-\frac{1}{2}}=\Sigma_{r}^{-\frac{1}{2}} U_{r}^{*}\left[\begin{array}{c}C \\ C A \\ C A^{2} \\ \vdots\end{array}\right] A\left[\begin{array}{llll}B & A B & A^{2} B & \ldots\end{array}\right] V_{r} \Sigma_{r}^{-\frac{1}{2}}=$
$\Sigma_{r}^{-\frac{1}{2}} U_{r}^{*}\left[\begin{array}{ccc}C A B & C A^{2} B & \cdots \\ C A^{2} B & C A^{3} B & \cdots \\ \vdots & \vdots & \ddots\end{array}\right] V_{r} \Sigma_{r}^{-\frac{1}{2}}=\Sigma_{r}^{-\frac{1}{2}} U_{r}^{*}\left[\begin{array}{ccc}Z(2) & Z(3) & \cdots \\ Z(3) & Z(4) & \cdots \\ \vdots & \vdots & \ddots\end{array}\right] V_{r} \Sigma_{r}^{-\frac{1}{2}}$
$2 / B_{r}=S^{*} B=\Sigma_{r}^{-\frac{1}{2}} U_{r}^{*} Y^{*} \mathrm{~B}=\Sigma_{r}^{-\frac{1}{2}} U_{r}^{*}\left[\begin{array}{c}C \\ C A \\ C A^{2} \\ \vdots\end{array}\right] \mathrm{B}=\Sigma_{r}^{-\frac{1}{2}} U_{r}^{*}\left[\begin{array}{c}C B \\ C A B \\ C A^{2} B \\ \vdots\end{array}\right]$
Since $\Sigma_{r}^{-\frac{1}{2}} U_{r}^{*}\left(Y^{*} X\right)=\Sigma_{r}^{\frac{1}{2}} V_{r}^{*}$,
B_{r} corresponds to the first column of $\Sigma_{r}^{\frac{1}{2}} V_{r}^{*}$.
3/ $C_{r}=C T=C X V_{r} \Sigma_{r}^{-\frac{1}{2}}=\left[\begin{array}{llll}C B & C A B & C A^{2} B & \cdots\end{array}\right] V_{r} \Sigma_{r}^{-\frac{1}{2}}$
Since $\left(Y^{*} X\right) V_{r} \Sigma_{r}^{-\frac{1}{2}}=U_{r} \Sigma_{r}^{\frac{1}{2}}$.
C_{r} corresponds to the first row of $U_{r} \Sigma_{r}^{\frac{1}{2}}$

Eigensystem Realization Algorithm (ERA)

ERA algorithm:
Let $Z(k)=C A^{k-1} B$ be the impulse response of a large-scale system. If we perform the SVD of the Hankel matrix:

$$
\left[\begin{array}{ccc}
Z(1) & Z(2) & \cdots \\
Z(2) & Z(3) & \cdots \\
\vdots & \vdots & \ddots
\end{array}\right]=U \Sigma V^{*} \approx U_{r} \Sigma_{r} V_{r}^{*}, U_{r}^{*} U_{r}=V_{r}^{*} V_{r}=I
$$

then, the balanced system is:

$$
\left\{\begin{array}{c}
w_{r}(k+1)=A_{r} w_{r}(k)+B_{r} u(k) \\
y(k)=C_{r} w_{r}(k)
\end{array}\right.
$$

where:
$1 / A_{r}=\Sigma_{r}^{-\frac{1}{2}} U_{r}^{*}\left[\begin{array}{ccc}Z(2) & Z(3) & \cdots \\ Z(3) & Z(4) & \cdots \\ \vdots & \vdots & \ddots .\end{array}\right] V_{r} \Sigma_{r}^{-\frac{1}{2}}$
2/ B_{r} corresponds to the first column of $\Sigma_{r}^{\frac{1}{2}} V_{r}^{*}$
3/ C_{r} corresponds to the first row of $U_{r} \Sigma_{r}^{\frac{1}{2}}$

