Model reduction: Balanced truncation

- 1/ Antoulas, A. C. (2005). Approximation of large-scale dynamical systems (Vol. 6). Siam.
- 2/ Rowley, C. W. (2005). Model reduction for fluids, using balanced proper orthogonal decomposition. International Journal of Bifurcation and Chaos, 15(03), 997-1013.
- 3/ Barbagallo, A., Sipp, D., & Schmid, P. J. (2009). Closed-loop control of an open cavity flow using reduced-order models. Journal of Fluid Mechanics, 641, 1-50.
- 4/ Ma, Z., Ahuja, S., & Rowley, C. W. (2011). Reduced-order models for control of fluids using the eigensystem realization algorithm. *Theoretical and Computational Fluid Dynamics*, 25(1-4), 233-247.

- Description of problem
- Discrete time systems
- Controllability
- Observability
- Change of basis
- Balanced representations
- How to obtain balanced representations?
- Balanced truncation
 - > Error bounds
 - Stability
- ERA

Non-linear dynamics with one input and one output:

$$\begin{cases} \partial_t w = \mathcal{A}(w) + \mathcal{B}(u) \\ y = \mathcal{C}(w) \end{cases}$$

Fixed point:

$$\mathcal{A}(w_0) + \mathcal{B}(0) = 0$$

Dynamics around fixed point:

$$\begin{cases} w(t) := w_0 + \varepsilon w(t) \\ u(t) := 0 + \varepsilon u(t) \\ y(t) := \mathcal{C}(w_0) + \varepsilon y(t) \end{cases}$$

Linearization:

$$\begin{cases} \varepsilon \partial_t w = \mathcal{A}(w_0) + \varepsilon A w + \mathcal{B}(0) + \varepsilon B u \\ \mathcal{C}(w_0) + \varepsilon y(t) = \mathcal{C}(w_0) + \varepsilon \mathcal{C} w \end{cases}$$

<u>Linear-Time-Invariant model:</u>

$$\begin{cases} \partial_t w = Aw + Bu \\ y = Cw \end{cases}$$

- Continuous model (PDE): $\partial_t w$
 - ↓ Spatial discretization
- Large-dimensional model obtained after spatial discretization (ODE): $d_t w$
 - ↓ Model reduction
- Reduced-order model (ODE)

Let us consider the following large-scale (dimension n) single-input single-output (SISO) problem:

$$d_t w = Aw + Bu$$
$$y = Cw$$

where *A* is stable.

Solution:

$$y(t) = Ce^{A(t-t_0)}w_I + \int_{t_0}^t Ce^{A(t-\tau)}Bu(\tau)d\tau$$

If $t_0 \to -\infty$ and $w_I = 0$:

$$y(t) = \int_{-\infty}^{t} Z(t - \tau)u(\tau)d\tau$$

where:

$$Z(t) = Ce^{At}B, t \ge 0$$

Dynamics from input to output is fully characterized by Z(t)

Description of problem: impulse response

Z(t) corresponds to the impulse response of the system.

The impulse response of the system is defined as follows: let us consider the system driven by $u(t) = \delta(t)$, with the initial condition $w(0^-) = w_I = 0$. The solution is given by:

$$\Rightarrow y(t) = Ce^{At}B = Z(t) \text{ for } t \ge 0.$$

Proof:

$$\int_{0^{-}}^{0^{+}} (d_{t}w)dt = \int_{0^{-}}^{0^{+}} (Aw + Bu)dt$$
$$[w]_{0^{-}}^{0^{+}} = 0 + B \int_{0^{-}}^{0^{+}} (\delta(t))dt$$
$$w(0^{+}) - w_{I} = B$$

Finally:

$$w(t) = e^{At}B$$
 and $y(t) = Ce^{At}B$

Description of problem: transfer function

The transfer function $T_{yu}(i\omega)$ between u and y is obtained by considering the frequency domain: $u(t)=e^{i\omega t}\hat{u}$, $w(t)=e^{i\omega t}\hat{w}$, $y(t)=e^{i\omega t}\hat{y}$. It corresponds to the ratio of \hat{y} and \hat{u} :

$$T_{yu}(i\omega) = \frac{\hat{y}}{\hat{u}} = C(i\omega I - A)^{-1}B$$

It may be shown that $T_{yu}(i\omega)$ is equal to the Fourier transform of Z(t):

$$T_{yu}(i\omega) = \widehat{Z}(i\omega) = \int_{-\infty}^{+\infty} e^{-i\omega t} Z(t) dt$$

Proof:

An eigenvalue decomposition of $A = V\Lambda V^{-1}$ yields:

$$Z(t) = Ce^{At}B = CVe^{\Lambda t}V^{-1}B$$

Therefore:

$$\begin{split} \widehat{Z}\left(i\omega\right) &= \int_{-\infty}^{+\infty} e^{-i\omega t} Z(t) \, dt = \int_{0}^{+\infty} e^{-i\omega t} Z(t) \, dt = CV \Big[\int_{0}^{+\infty} e^{(\Lambda - i\omega I)t} \, dt \Big] V^{-1} B = \\ CV \Big[(\Lambda - i\omega I)^{-1} e^{(\Lambda - i\omega I)t} \Big]_{0}^{+\infty} V^{-1} B = -CV (\Lambda - i\omega I)^{-1} V^{-1} B = C(i\omega I - A)^{-1} B = T_{yu}(i\omega) \end{split}$$

Reduced-Order-Modelling consists in finding a small-scale system:

$$\begin{cases} d_t w_r = A_r w_r + B_r u \\ y = C_r w_r \end{cases}$$

which preserves these curves.

In particular,

$$Ce^{At}B \approx C_r e^{A_r t} B_r \ \forall t \ge 0$$

$$C(i\omega I - A)^{-1}B \approx C_r (i\omega I - A_r)^{-1} B_r \ \forall \omega$$

What does preserve mean?

Let us introduce the following norms to quantify the input-output relation: 1/ The 2-norm:

$$||Z||_{2} = \sqrt{\int_{0}^{+\infty} Z(t)^{2} dt} = \int_{\text{Parseval}} \sqrt{\frac{1}{2\pi} \int_{-\infty}^{+\infty} |T_{yu}(i\omega)|^{2} d\omega}$$

2/ The ∞-norm:

$$||Z||_{\infty} = \max_{\omega} |T_{yu}(i\omega)| = \max_{u(t)} \frac{\sqrt{\int_{0}^{+\infty} y(t)^{2} dt}}{\sqrt{\int_{0}^{+\infty} u(t)^{2} dt}}$$

Preserve means that we should find Z_r such that $||Z - Z_r||$ is minimal in one of the chosen norms.

- Description of problem
- Discrete time systems
- Controllability
- Observability
- Change of basis
- Balanced representations
- How to obtain balanced representations?
- Balanced truncation
 - > Error bounds
 - Stability
- ERA

<u>Discrete time system:</u>

$$w(k + 1) = Aw(k) + Bu(k)$$
$$y(k) = Cw(k)$$

Link between continuous time and discrete time systems:

Integration of linearized Navier-Stokes equations over sampling time Δt (with control signal constant over t and $t + \Delta t$)

$$w(t + \Delta t) = \underbrace{e^{A\Delta t}}_{\text{new}A} w(t) + \underbrace{\int_{0}^{\Delta t} e^{A(\Delta t - \tau)} B d\tau}_{\text{new} B} u(t)$$

Note that the sampling time Δt may be large!

Solution (for w(0) = 0):

$$y(k) = \sum_{j=0}^{k-1} Z(k-j)u(j)$$

Where Z(k) designates the impulse response of the system (A, B, C):

$$Z(k) = CA^{k-1}B, k \ge 1$$

Impulse response:

 Z_k correponds to the solution with the following driving terms:

$$u(0) = 1, u(k \ge 1) = 0$$

 $w(0) = 0$

Then:

$$k = 0, u = 1, w = 0, y = 0$$

 $k = 1, u = 0, w = B, y = CB$
 $k = 2, u = 0, w = AB, y = CAB$
 $k = 3, u = 0, w = A^2B, y = CA^2B$

$$\Rightarrow k, u = 0, w = A^{k-1}B, y = CA^{k-1}B$$

Transfer function:

Let us consider a mode, an excitation and a measurement of period n (which corresponds to a time-period $T = n\Delta t \Rightarrow \omega = \frac{2\pi}{n\Delta t}$):

$$u(k) = e^{\frac{2\pi ik}{n}} \hat{u}, w(k) = e^{\frac{2\pi ik}{n}} \hat{w}, y(k) = e^{\frac{2\pi ik}{n}} \hat{y}$$

Introducing the notation $z=e^{\frac{2\pi i}{n}}(=e^{i\omega\Delta t})$, the transfer function from u to y is :

$$T_{yu}(z) = \frac{\hat{y}}{\hat{u}} = C(zI - A)^{-1}B$$

Proof:

$$w(k+1) = Aw(k) + Bu(k) \Rightarrow e^{\frac{z}{2\pi i}} \widehat{w} = A\widehat{w} + B\widehat{u}$$
$$\Rightarrow \widehat{w} = (zI - A)^{-1}B\widehat{u}$$

It may be shown that:

$$T_{yu}(z) = Z(1)z^{-1} + Z(2)\,z^{-2} + Z(3)z^{-3} + Z(4)z^{-4} + \cdots$$

where: $Z(k) = CA^{k-1}B$ is the impulse response of the system.

$$T_{yu}(z) = \frac{\hat{y}}{\hat{u}} = C(zI - A)^{-1}B$$

$$= Cz^{-1}(I + Az^{-1} + A^2z^{-2} + A^3z^{-3} + \cdots)B \text{ (since } A \text{ is stable)}$$

$$= CBz^{-1} + CABz^{-2} + CA^2Bz^{-3} + CA^3Bz^{-4} + \cdots$$

$$\approx Z(1)z^{-1} + Z(2)z^{-2} + Z(3)z^{-3} + Z(4)z^{-4} + \cdots$$

Norms of system (*A*, *B*, *C*) in discrete time:

1/2-norm:

$$||Z||_2 = \sqrt{\sum_{k=0}^{\infty} Z(k)^2}$$

2/ ∞-norm:

$$||Z||_{\infty} = \max_{z=e^{\frac{2\pi i}{n}}, n \ge 1} |T_{yu}(z)|$$

- Description of problem
- Discrete time systems
- Controllability
- Observability
- Change of basis
- Balanced representations
- How to obtain balanced representations?
- Balanced truncation
 - > Error bounds
 - Stability
- ERA

<u>Definition</u>: Given a system (A, B) of dimension n, a state w is reachable if there exists an input u(k) of finite energy and a time m such that under that input and zero initial condition, the state of the system becomes w:

$$w(m) = \underbrace{A^{m}w_{I}}_{0} + \sum_{k=0}^{m-1} A^{m-k-1}Bu(k)$$

<u>Definition:</u> the reachable subspace is the set containing all the reachable states of the system

<u>Definition</u>: $\mathcal{R}(A, B) = [B, AB, \dots, A^kB, \dots]$ is the reachability matrix.

<u>Definition</u>: $\mathcal{R}_m(A, B) = [B, AB, \dots, A^{m-1}B]$

<u>Theorem:</u> the reachable subspace corresponds to im $\mathcal{R}(A,B)$ (or the span of the columns of $\mathcal{R}(A,B)$).

<u>Definition</u>: The system (A,B) is completely reachable if the reachable subspace is the full space, i.e. rank $\mathcal{R}(A,B) = n$.

Definition:

The controllability Gramian at horizon m is the matrix:

$$G_c = \mathcal{R}_m (A, B) [\mathcal{R}_m (A, B)]^* = \sum_{k=0}^{m-1} A^k B B^* A^{*k}$$

Properties of G_c :

 $1/G_c$ is an n by n symmetric positive matrix: $w^*G_cw \ge 0 \ \forall w$.

 $2/\operatorname{im} G_c = \operatorname{im} \mathcal{R}(A, B) \text{ for } m \geq n$

3/(A,B) is fully reachable if and only if the kernel of G_c is the null space for some m

4/ If (A, B) is fully reachable, then the minimum energy to reach w over control horizon [0, m] is $w^*G_c^{-1}w$. w is a controllable state if this quantity is small.

Proof of $1/G_c^* = G_c$

$$w^*G_cw = \sum_{k=0}^{m-1} w^*A^kBB^*A^{*k}w = \sum_{k=0}^{m-1} |B^*A^{*k}w|^2 \ge 0$$

Proof of 3/ dim im G_c + dim Ker $G_c = n$

Proof of 4/ for any state w_f , there exists a state ξ such that

$$w_f = G_c \xi$$
.

Let us consider at time *m* the state obtained with the control law

$$u(k) = B^* A^{*m-k-1} \xi$$

and the initial state $w(0) = w_I = 0$. Then:

$$w(m) = \underbrace{A^{m}w_{l}}_{0} + \sum_{k=0}^{m-1} A^{m-k-1}Bu(k)$$

$$= \sum_{k=0}^{m-1} A^{m-k-1}BB^{*}A^{*m-k-1}\xi = \sum_{k'=m-1-k} \underbrace{\sum_{k'=0}^{m-1} A^{k'}BB^{*}A^{*k'}}_{G_{c}} \xi = w_{f}$$
The energy cost related to this law is:

The energy cost related to this law is:

$$\sum_{k=0}^{m-1} u(k)^* u(k) = \sum_{k=0}^{m-1} \xi^* A^{m-k-1} B B^* A^{*m-k-1} \xi = \xi^* G_c \xi = (G_c^{-1} w_f)^* G_c G_c^{-1} w_f$$

$$= w_f^* G_c^{-1} w_f$$

If $m \to \infty$, the infinite controllability Gramian is:

$$G_c^{\infty} = \sum_{k=0}^{\infty} A^k B B^* A^{*k}$$

 G_c^{∞} is solution of a discrete Lyapunov equation:

$$AG_c^{\infty}A^* - G_c^{\infty} + BB^* = 0$$

Proof:

$$G_c^{\infty} = \sum_{k=0}^{\infty} A^k B B^* A^{*k} = B B^* + \sum_{k=1}^{\infty} A^k B B^* A^{*k}$$
$$= B B^* + A \underbrace{\left(\sum_{k=1}^{\infty} A^{k-1} B B^* A^{*k-1}\right)}_{G_c^{\infty}} A^*$$

So:

$$G_c^{\infty} = BB^* + AG_c^{\infty}A^*$$

- Description of problem
- Discrete time systems
- Controllability
- Observability
- Change of basis
- Balanced representations
- How to obtain balanced representations?
- Balanced truncation
 - > Error bounds
 - Stability
- ERA

Observability

<u>Definition</u>: Given a system (A, C) of dimension n, a state w is unobservable if for all $k \ge 0$, $CA^k w = 0$.

<u>Definition:</u> the unobservable subspace is the set containing all the unobservable states of the system.

Definition:
$$\mathcal{O}(C, A) = \begin{bmatrix} C \\ CA \\ \vdots \\ CA^k \end{bmatrix}$$
 is the observability matrix.

Definition: $\mathcal{O}_m(C, A) = \begin{bmatrix} C \\ CA \\ \vdots \\ CA^{m-1} \end{bmatrix}$

<u>Theorem:</u> the unobservable subspace corresponds to ker $\mathcal{O}(C, A)$

Observability

<u>Definition:</u> For a stable system, the observability Gramian at horizon *m* is

$$G_o = [\mathcal{O}_m(C, A)]^* \mathcal{O}_m(C, A) = \sum_{k=0}^{m-1} A^{*k} C^* C A^k$$

Properties:

 $1/G_o$ is an n by n symmetric positive semi-definite matrix:

$$w^*G_o w = \sum_{k=0}^{m-1} |CA^k w|^2 \ge 0 \ \forall w$$

2/ ker $\mathcal{O}(C,A)$ =ker G_o for $m \ge n$ (the unobservable subspace is the kernel of the observability Gramian).

3/ The energy produced by observing the output of the system corresponding to an initial state w over time horizon [0, m] is w^*G_ow . w is an observable state if this quantity is large.

Observability

The inifinite observability Gramian G_o^{∞}

$$G_o^{\infty} = \sum_{k=0}^{\infty} A^{*k} C^* C A^k$$

is solution of a discrete Lyapunov equation:

$$A^* G_o^{\infty} A - G_o^{\infty} + C^* C = 0$$

- Description of problem
- Discrete time systems
- Controllability
- Observability
- Change of basis
- Balanced representations
- How to obtain balanced representations?
- Balanced truncation
 - > Error bounds
 - Stability
- ERA

Change of basis

If $w = Tw_r$, then

$$\begin{cases} w_r(k+1) = \overbrace{T^{-1}AT}^{A_r} w_r(k) + \overbrace{T^{-1}B}^{B_r} u(k) \\ y(k) = \underbrace{CT}_{C_r} w_r(k) \end{cases}$$

Then:

$$G_{cr} = \sum_{k=0}^{m-1} A_r^k B_r B_r^* A_r^{*k} = \sum_{k=0}^{m-1} T^{-1} A^k T T^{-1} B B^* T^{-1*} T^* A^{*k} T^{*-1}$$

$$= T^{-1} \sum_{k=0}^{m-1} A^k B B^* A^{*k} T^{*-1}$$

$$G_{or} = \sum_{k=0}^{m-1} A_r^{*k} C_r^* C_r A_r^k = T^* \underbrace{\sum_{k=0}^{m-1} A^{*k} C^* C A^k}_{G_o} T$$

Change of basis

Theorem:

Under a change of basis, the product of the two Gramians becomes:

$$G_{cr}G_{or} = T^{-1}G_cG_oT.$$

The EVD of G_cG_o therefore yields a basis T in which $G_{cr}G_{or}$ is a diagonal matrix.

Proof:

$$G_{cr}G_{or} = T^{-1}G_{c}T^{*-1}T^{*}G_{o}T = T^{-1}G_{c}G_{o}T$$

The EVD of G_cG_o yields:

$$G_c G_o = T \Sigma T^{-1}$$

Then, in this basis:

$$G_{cr}G_{or} = T^{-1}T\Sigma T^{-1}T = \Sigma$$

- Description of problem
- Discrete time systems
- Controllability
- Observability
- Change of basis
- Balanced representations
- How to obtain balanced representations?
- Balanced truncation
 - > Error bounds
 - Stability
- ERA

Balanced representations

We look for states: That are easy to reach / That are easy to observe. We would like to remove states: That are difficult to reach / That are difficult to observe.

<u>Definition:</u> A system (A, B, C) of dimension n is balanced if the controllability and observability Gramians are equal and diagonal:

$$G_c = G_o = \begin{pmatrix} \sigma_1 & 0 & 0 \\ 0 & \ddots & 0 \\ 0 & 0 & \sigma_n \end{pmatrix}$$

with $\sigma_1 \ge \sigma_2 \ge \cdots \ge \sigma_n$. These coefficients are the Hankel singular values. The vectors (e_i) of this basis verify:

$$e_i^* G_c^{-1} e_i = \frac{1}{\sigma_i},$$

$$e_i^* G_o e_i = \sigma_i.$$

Hence: e_1 has minimal reachability energy and maximal observability energy. e_n has maximal reachability energy and minimal observability energy.

- Description of problem
- Discrete time systems
- Controllability
- Observability
- Change of basis
- Balanced representations
- How to obtain balanced representations?
- Balanced truncation
 - > Error bounds
 - Stability
- ERA

How to obtain balanced representations?

Algorithm of Laub et al. 1987

- 1/ Factor G_c and G_o such that: $G_c = XX^*$ and $G_o = YY^*$
- 2/ Perform the SVD of the cross-Gramian:

$$Y^*X = U\Sigma V^*, V^*V = U^*U = I$$

The diagonal elements of Σ (Σ_i) are the Hankel singular values.

3/ Compute the bases: $T = XV\Sigma^{-\frac{1}{2}}$ and $S = YU\Sigma^{-\frac{1}{2}}$.

These bases are bi-orthogonal: $S^*T = I$

T provides a balanced system: $G_{cr}=T^{-1}G_cT^{*-1}=\Sigma$, $G_{or}=T^*G_oT=\Sigma$ 4/ $G_cG_oT=T\Sigma^2$

Proof:

$$S^*T = \Sigma^{-\frac{1}{2}}U^*Y^*XV\Sigma^{-\frac{1}{2}} = \Sigma^{-\frac{1}{2}}U^*U\Sigma V^*V\Sigma^{-\frac{1}{2}} = I$$

$$T^{-1}G_cT^{*-1} = \Sigma^{-\frac{1}{2}}U^*Y^*XX^*YU\Sigma^{-\frac{1}{2}} = \Sigma^{-\frac{1}{2}}U^*U\Sigma V^*V\Sigma U^*U\Sigma^{-\frac{1}{2}} = \Sigma$$

$$T^*G_oT = \Sigma^{-\frac{1}{2}}V^*X^*YY^*XV\Sigma^{-\frac{1}{2}} = \Sigma^{-\frac{1}{2}}V^*V\Sigma U^*U\Sigma V^*V\Sigma^{-\frac{1}{2}} = \Sigma$$

$$G_cG_oT = XX^*YY^*XV\Sigma^{-\frac{1}{2}} = XV\Sigma U^*U\Sigma V^*V\Sigma^{-\frac{1}{2}} = T\Sigma^2$$

- Description of problem
- Discrete time systems
- Controllability
- Observability
- Change of basis
- Balanced representations
- How to obtain balanced representations?
- Balanced truncation
 - > Error bounds
 - Stability
- ERA

Balanced system/Balanced truncation

The balanced system is:

$$\begin{cases} w_r(k+1) = A_r w_r(k) + B_r u(k) \\ y(k) = C_r w_r(k) \end{cases}$$
 with $A_r = S^*AT$, $B_r = S^*B$, $C_r = CT$

The balanced system may be rewritten as (the subscript 1 and 2 denoting respectively a subspace of dimension p and n-p):

$$\begin{bmatrix} w_{r1}(k+1) \\ w_{r2}(k+1) \end{bmatrix} = \begin{bmatrix} A_{r11} & A_{r12} \\ A_{r21} & A_{r22} \end{bmatrix} \begin{bmatrix} w_{r1}(k) \\ w_{r2}(k) \end{bmatrix} + \begin{bmatrix} B_{r1} \\ B_{r2} \end{bmatrix} u(k)$$
$$y(k) = \begin{bmatrix} C_{r1} & C_{r2} \end{bmatrix} \begin{bmatrix} w_{r1}(k) \\ w_{r2}(k) \end{bmatrix}$$

The truncated system is:

$$w_{r1}(k+1) = A_{r11}w_{r1}(k) + B_{r1}u(k)$$
$$y(k) = C_{r1}w_{r1}(k)$$

The impulse response $Z_p(k) = C_{r1}A_{r11}^{k-1}B_{r1}$ and tranfer-function $T_{yu,p}(z) = C_{r1}(zI_r - A_{r11})^{-1}B_{r1}$ are close to the initial ones: $Z(k) = CA^{k-1}B$ and $T_{yu}(z) = C(zI - A)^{-1}B$.

Balanced truncation: error bounds

Error bounds:

With infinite Gramians, we have:

$$\Sigma_{p+1} < \|Z - Z_p\|_{\infty} < 2 \sum_{j=p+1}^{n} \Sigma_j$$

where Σ_i are the Hankel singular values.

Proof:

see Antoulas 2005.

Balanced truncation: stability

Stability:

Any reduced (truncated) system A_{r11} obtained by balanced truncation (with infinite Gramians) is stable.

Proof:

In the balanced basis, the infinite controllability Gramian verifies:

$$AG_c^{\infty}A^* - G_c^{\infty} + BB^* = 0$$

$$\Rightarrow \begin{bmatrix} A_{r11} & A_{r12} \\ A_{r21} & A_{r22} \end{bmatrix} \begin{bmatrix} \Sigma_1 & 0 \\ 0 & \Sigma_2 \end{bmatrix} \begin{bmatrix} A_{r11}^* & A_{r21}^* \\ A_{r12}^* & A_{r22}^* \end{bmatrix} - \begin{bmatrix} \Sigma_1 & 0 \\ 0 & \Sigma_2 \end{bmatrix} + \begin{bmatrix} B_{r1} \\ B_{r2} \end{bmatrix} [B_{r1}^* & B_{r2}^*] = 0$$

$$\begin{bmatrix} A_{r11} & A_{r12} \\ A_{r21} & A_{r22} \end{bmatrix} \begin{bmatrix} \Sigma_1 & 0 \\ 0 & \Sigma_2 \end{bmatrix} \begin{bmatrix} A_{r11}^* & A_{r21}^* \\ A_{r12}^* & A_{r22}^* \end{bmatrix} = \begin{bmatrix} A_{r11} & A_{r12} \\ A_{r21} & A_{r22} \end{bmatrix} \begin{bmatrix} \Sigma_1 A_{r11}^* & \Sigma_1 A_{r21}^* \\ \Sigma_2 A_{r12}^* & \Sigma_2 A_{r22}^* \end{bmatrix}$$

$$= \begin{bmatrix} A_{r11} \Sigma_1 A_{r11}^* + A_{r12} \Sigma_2 A_{r12}^* & ? \\ ? & ? \end{bmatrix}$$

Balanced truncation: stability

The upper left block is:

$$A_{r11}\Sigma_1 A_{r11}^* + A_{r12}\Sigma_2 A_{r12}^* - \Sigma_1 + B_{r1}B_{r1}^* = 0$$

Consider an eigenvalue/eigenvector:

$$A_{r11}^* w = \lambda w$$

Then:

$$w^*A_{r11}\Sigma_1A_{r11}^*w + w^*A_{r12}\Sigma_2A_{r12}^*w - w^*\Sigma_1w + w^*B_{r1}B_{r1}^*w$$

$$= \underbrace{(|\lambda|^2 - 1)}_{=\sigma < 0}\underbrace{w^*\Sigma_1w}_{> 0}\underbrace{+w^*A_{r12}\Sigma_2A_{r12}^*w}_{> 0}\underbrace{w^*B_{r1}B_{r1}^*w}_{> 0} = 0$$

- Description of problem
- Discrete time systems
- Controllability
- Observability
- Change of basis
- Balanced representations
- How to obtain balanced representations?
- Balanced truncation
 - > Error bounds
 - Stability
- ERA

Eigensystem Realization Algorithm (ERA)

1/ Gramians may be factored as $G_c = XX^*$, $G_o = YY^*$ with:

$$X = \mathcal{R}_m (A, B) = [B, AB, \dots, A^{m-1}B]$$

$$Y = [\mathcal{O}_m(C, A)]^* = [C^*, A^*C^*, \dots, (A^*)^{m-1}C^*]$$

$$2/Y^*X = \begin{bmatrix} C \\ CA \\ CA^2 \\ \vdots \end{bmatrix} \begin{bmatrix} B & AB & A^2B & \cdots \end{bmatrix} = \begin{bmatrix} CB & CAB & \cdots \\ CAB & CA^2B & \cdots \\ \vdots & \vdots & \ddots \end{bmatrix} = \begin{bmatrix} Z(1) & Z(2) & \cdots \\ Z(2) & Z(3) & \cdots \\ \vdots & \vdots & \ddots \end{bmatrix}$$

Can be obtained just from impulse response $Z(k) = CA^{k-1}B$.

 $2/\text{Perform SVD of } Y^*X$:

$$Y^*X = U\Sigma V^* \approx U_r\Sigma_r V_r^*$$
, $U_r^*U_r = V_r^*V_r = I$

3/ Compute bases: $T = XV_r\Sigma_r^{-\frac{1}{2}}$ and $S = YU_r\Sigma_r^{-\frac{1}{2}}$

4/ The balanced system is:

$$\begin{cases} w_r(k+1) = A_r w_r(k) + B_r u(k) \\ y(k) = C_r w_r(k) \end{cases}$$

With $A_r = S^*AT$, $B_r = S^*B$, $C_r = CT$

Can we obtain (A_r, B_r, C_r) just from impulse response Z(k)?

Eigensystem Realization Algorithm (ERA)

$$1/A_{r} = S^{*}AT = \sum_{r}^{-\frac{1}{2}} U_{r}^{*}Y^{*}AXV_{r} \sum_{r}^{-\frac{1}{2}} = \sum_{r}^{-\frac{1}{2}} U_{r}^{*} \begin{bmatrix} C \\ CA \\ CA^{2} \\ CA^{2} \end{bmatrix} A[B \quad AB \quad A^{2}B \quad \cdots] V_{r} \sum_{r}^{-\frac{1}{2}} = \sum_{r}^{-\frac{1}{2}} U_{r}^{*} \begin{bmatrix} Z(2) & Z(3) & \cdots \\ Z(3) & Z(4) & \cdots \\ \vdots & \vdots & \ddots \end{bmatrix} V_{r} \sum_{r}^{-\frac{1}{2}} = \sum_{r}^{-\frac{1}{2}} U_{r}^{*} \begin{bmatrix} Z(2) & Z(3) & \cdots \\ Z(3) & Z(4) & \cdots \\ \vdots & \vdots & \ddots \end{bmatrix} V_{r} \sum_{r}^{-\frac{1}{2}} = \sum_{r}^{-\frac{1}{2}} U_{r}^{*} \begin{bmatrix} C \\ CA \\ CA^{2} \\ CA^{2} \\ \vdots \end{bmatrix} B = \sum_{r}^{-\frac{1}{2}} U_{r}^{*} \begin{bmatrix} CB \\ CAB \\ CA^{2}B \\ \vdots \end{bmatrix}$$

Since
$$\Sigma_r^{-\frac{1}{2}} U_r^* (Y^* X) = \Sigma_r^{\frac{1}{2}} V_r^*$$

 B_r corresponds to the first column of $\sum_{r=1}^{\frac{1}{2}} V_r^*$.

$$3/C_r = CT = CXV_r\Sigma_r^{-\frac{1}{2}} = [CB \quad CAB \quad CA^2B \quad ...]V_r\Sigma_r^{-\frac{1}{2}}$$

Since $(Y^*X)V_r\Sigma_r^{-\frac{1}{2}} = U_r\Sigma_r^{\frac{1}{2}}$.

 C_r corresponds to the first row of $U_r \Sigma_r^{\frac{1}{2}}$

Eigensystem Realization Algorithm (ERA)

ERA algorithm:

Let $Z(k) = CA^{k-1}B$ be the impulse response of a large-scale system. If we perform the SVD of the Hankel matrix:

$$\begin{bmatrix} Z(1) & Z(2) & \cdots \\ Z(2) & Z(3) & \cdots \\ \vdots & \vdots & \ddots \end{bmatrix} = U\Sigma V^* \approx U_r \Sigma_r V_r^*, U_r^* U_r = V_r^* V_r = I$$

then, the balanced system is:

$$\begin{cases} w_r(k+1) = A_r w_r(k) + B_r u(k) \\ y(k) = C_r w_r(k) \end{cases}$$

where:

 $2/B_r$ corresponds to the first column of $\Sigma_r^{\frac{1}{2}}V_r^*$

3/ C_r corresponds to the first row of $U_r \Sigma_r^{\overline{2}}$