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Description of problem

Non-linear dynamics with one input and one output:
{atw = Aw) + B(u)

y=C(w)

Fixed point:

AWwy) +B(0) =0

Dynamics around fixed point:

w(t):=wy + ew(t)
u(t):= 0+ su(t)
y(t) = C(wy) + ey(t)

Linearization:

0w = A(wy) + eAw + B(0) + eBu
{ C(wg) + ey(t) = C(wy) + eCw

Linear-Time-Invariant model:

{6tw = Aw + Bu
y =Cw



Description of problem

* Continuous model (PDE): a,w
! Spatial discretization

* Large-dimensional model obtained after spatial discretization (ODE): d,w
! Model reduction

* Reduced-order model (ODE)



Description of problem

Let us consider the following large-scale (dimension n) single-input single-
output (SISO) problem:
diw = Aw + Bu
y =Cw
where A is stable.

Solution:
t

y(t) = CeAltto)yy, +J CeAt=DBy(7)dt
to
Ifty > —c0cand w; = 0:

t
y(t) = J Z(t —u(r)dr

where:
Z(t) = Ce4'B,t >0

Dynamics from input to output is fully characterized by Z(t)



Description of problem:
impulse response

Z(t) corresponds to the impulse response of the system.
The impulse response of the system is defined as follows: let us consider the system
driven by u(t) = 6(t), with the initial condition w(0~™) = w; = 0. The solution is
given by:

= y(t) = Ce B = Z(t) fort > 0.

Proof:

ot ot

j (d;w)dt =f (Aw + Bu)dt
_ _ .
Wit =0+B| (6@t))dt
o-
w(0*) —w;, =B

Finally:

w(t) = e4tBand y(t) = Ce“'B



Description of problem:
transfer function

The transfer function T, (iw) between u and y is obtained by considering the
frequency domain: u(t) = e'@'q, w(t) = e''w, y(t) = e'“t9. It corresponds to the

ratio of y and i :

=C(iwl — A)~'B

DD

Tyu(iw) =

It may be shown that T, (iw) is equal to the Fourier transform of Z (t):
+00
T, (iw) = Z (iw) = f e W7 (t) dt

Proof:
An eigenvalue decomposition of A = VAV 1 yields:
Z(t) = Ce B = CVelty 1B
Therefore:
Z(iw) = [T e7tz(t)dt = [ em 9t Z(t) dt = CV[f0+°° e(A-iwDt dt]v-lB _

CV|[(A - iwI)‘le(A‘iw’)t];ooV‘lB = —CV(A — iw)"'V™1B = C(iwl — A)™'B = T, (iw)



Description of problem

|Tyu(i“))|

Z(t) ‘\\

Reduced-Order-Modelling consists in finding a small-scale system:
{dtwr = A,.w, + B,u
y = CGwy
which preserves these curves.
In particular,
Ce4'B ~ C,e4'B. vVt > 0
Cliwl —A)™ B =~ C,(iwl —A,)"'B, Vw
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Description of problem

What does preserve mean ?

Let us introduce the following norms to quantify the input-output relation:

1/ The 2-norm:
+ oo 1 400 ' )
izie= | zwrae = [ inue)do

Parseval

2/ The co-norm:

\/f0+°°y(t)2dt
1Z||ls = max|Tyu(ia))| = max
W u(t) +o0
\/fo u(t)2dt

Preserve means that we should find Z,- such that ||Z — Z,|| is minimal in one of
the chosen norms.
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Discrete time systems

Discrete time system:

w(k + 1) = Aw(k) + Bu(k)
y(k) = Cw(k)

Link between continuous time and discrete time systems:
Integration of linearized Navier-Stokes equations over sampling time At (with control
signal constant over t and t + At)

At
w(t + At) = e4Bt w(t) + j eA-TDBdr u(t)
newa4 0

new B
Note that the sampling time At may be large!

Solution (for w(0) = 0):

k-1
y(k) = ) 20k = ug)
j=0

Where Z (k) designates the impulse response of the system (4, B, C):
Z(k) = CA* Bk >1



Discrete time systems

Impulse response:
Z correponds to the solution with the following driving terms:
u@=1Luk=1)=0
w(0) =0

Then:
k=0u=1w=0,y=0
k=1Lu=0w=B,y=CB
k=2,u=0w=AB,y=CAB
k=3,u=0w=A%B,y=CA*’B

= k,u=0w=A"1By=CA* 1B



Discrete time systems

Transfer function:

Let us consider a mode, an excitation and a measurement of period n (which

. : 2
corresponds to a time-period T = nAt = w = n—Zt ;

2mik 2mik 2mik
u(k)=e n t,wk)=e n w,y(k)=e n y
27l

Introducing the notation z = e'n (= e'®A!), the transfer function from u to y is :

N\

Tyu(z) = = = C(zl — A)'B

u
Proof:
z
2mi
w(k +1) = Aw(k) + Bu(k) > en w = Aw + Bl
= w=(z — A)~1Bi
It may be shown that:

Tu(2) =Z(Dz ' +Z(2) 272+ Z3)z 3 + Z(4)z™* + -
where: Z(k) = CA* 1B is the impulse response of the system.

Ty (2) = 2- = C(zl = A)7'B

=Cz Y+ Az 1+ A%z7%2 + A3z73 + ---)B (since A is stable)
=CBz '+ CABz %2+ CA?Bz™ 3+ CA3Bz™* + ---
~Z(Mz ' +Z2)z 2+ ZB)z 3+ Z(4)z™* + -



Discrete time systems

Norms of system (A4, B, C) in discrete time:

1/ 2-norm:
iz1l, = |> 200
k=0
2/ co-norm:
1ZI] , = max |7, (2)]



Discrete time systems

Continuous time Discrete time
A
n=4
n =3
S =iw
n=2
eST =z
s plane (an eigenvalue s in the continuous-time
system transforms into the eigenvalue

z = e in a discrete-time system with
sampling time T)
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Controllability

Definition: Given a system (4, B) of dimension n, a state w is reachable if there exists an
input u(k) of finite energy and a time m such that under that input and zero initial

condition, the state of the system becomes w:
m—-1

w(m) = A™w, + A™ 1By (k)
0 k=0

Definition: the reachable subspace is the set containing all the reachable states of the
system

Definition:R(4, B) = [B, AB, ---, A*¥B, --- ] is the reachability matrix.

Definition: R,, (4,B) = [B,AB,--,A™ 1B ]

Theorem: the reachable subspace corresponds to im R(A4, B) (or the span of the columns
of R(4, B)).

Definition: The system (4,85) is completely reachable if the reachable subspace is the full
space, i.e.rank R(4, B) = n.



Controllability

Definition:
The controllability Gramian at horizon m is the matrix:

m—1
G. =R, (A4, B[R, (4,B)]* = z AXBB*A*"
k=0
Properties of G:
1/ G, is ann by n symmetric positive matrix: w*G.w = 0 Vw.
2/im G, =imR(A,B) form =>n
3/ (4, B) is fully reachable if and only if the kernel of G, is the null space for some m

4/ If (A, B) is fully reachable, then the minimum energy to reach w over control horizon
[0, m] is w*G: w. w is a controllable state if this quantity is small.



Controllability

Proofof 1/G; = G,

m-—1 m-—1
* * Ak x %K *x 1xK 2
WGcw=zWABBA W=ZBA w| =0
k=0 k=0

Proof of 3/ dim im G, + dim Ker G, = n



Controllability

Proof of 4/ for any state Wr, there exists a state ¢ such that

Wf = Gcf
Let us consider at time m the state obtained with the control law
and the initial state w(0) = w; = 0. Then:

m-—1

w(m) = AmW, + Z AR By (k)

m m-—1

z mleBA*mklf

k,= 1-k kr=0
Ge
The energy cost related to this law is:
m—1 m—1
Z u(k) uk) = Z FAMTRIBR AR = £4G.E = (G wy) GG wy
k=0 =0

= W;Gc_lwf



Controllability

If m — oo, the infinite controllability Gramian is:
G = Z A¥BB*A**
k=0

G.° is solution of a discrete Lyapunov equation:
AGPA* -G +BB* =0

Proof:
G = 2 A¥BB*A** = BB* + Z A¥BB*A*k
k=0 o k=1
= BB*+ A ( Ak—lBB*A*k—l) A
k=1
G®
So:

G = BB* + AGP A*
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Observability

Definition: Given a system (4, C) of dimension n, a state w is unobservable if for all
k>0 CcA*w = 0.

Definition: the unobservable subspace is the set containing all the unobservable states
of the system.

CC -
CA
Definition: O(C,A) =| : |isthe observability matrix.
CAk
C
Definition: 0,,(C,A) = C:A
cam1]

Theorem: the unobservable subspace corresponds to ker O(C, A)




Observability

Definition: For a stable system, the observability Gramian at horizon m is
m—1
G, = [0,,(C, A)]"0,.(C,A) = z AkC*C Ak
k=0

Properties:

1/ G, is an n by n symmetric positive semi-definite matrix:
m—1

w G,w = Z |CAkW|2 > 0Vw
k=0

2/ ker O(C,A)=ker G, for m = n (the unobservable subspace is the kernel of the

observability Gramian).

3/ The energy produced by observing the output of the system corresponding to an
initial state w over time horizon [0, m] is w*G,w. w is an observable state if this quantity

is large.



Observability

The inifinite observability Gramian G;°

GP = Ak C*CAF
k=0

is solution of a discrete Lyapunov equation :
A'GLA-G°+CC=0
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Change of basis

Ifw = Tw,, then
Ay B,
P e

wy(k + 1) = T~1AT w, (k) + T~1B u(k)

y(k) = CT wy (k)
Cr

Then:

m-—1 m—1
k=0
m-—1

= T_l z ARBB*A*R T*—l
k=0

Ge

m-1 m—1
GOT = Z A;RC;CTATIE — T*z A*kC*CAkT
k=0 k=0

Go




Change of basis

Theorem:
Under a change of basis, the product of the two Gramians becomes:
GGy = T71G.G,T.
The EVD of G.G, therefore yields a basis T in which G,,.G,, is a diagonal matrix.

Proof:
GerGor = TG, T*1T*G, T =T 1G.G,T
The EVD of G.G,, yields:
G.G, =TXT™ 1!
Then, in this basis:
GerGor = TTITETIT =3
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Balanced representations

We look for states: That are easy to reach / That are easy to observe.
We would like to remove states: That are difficult to reach / That are difficult to observe.

Definition: A system (4, B, C) of dimension n is balanced if the controllability and
observability Gramians are equal and diagonal:

oo 0 O
G. =G, = <O 0)
0 0 oy,

with g; = 0, = -+ = 0,,. These coefficients are the Hankel singular values. The vectors
(e;) of this basis verify:
8; Gc_lei — ;i’
e;G,e; = 0.
Hence: e; has minimal reachability energy and maximal observability energy.
e, has maximal reachability energy and minimal observability energy.
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How to obtain balanced
representations?

Algorithm of Laub et al. 1987
1/ Factor G, and G, such that: G, = XX " and G, =YY~
2/ Perform the SVD of the cross-Gramian:
Y'X =UZV* V'V =U"U=1
The diagonal elements of X (%;) are the Hankel singular values.

1 1
3/ Compute the bases: T = XVX zand S = YUY -.
These bases are bi-orthogonal: S*T =1

T provides a balanced system: G, =T~ G.T* 1 =%,6,, =T*G,T =%
4/ G,G,T = Tx?

Proof:
1 1 1 1
S*T = Z 2UTY*XVY 2 =% 2U0*UZV*VY 2 =1
1 1 1
T‘lG T* 1 Z ZUYXX YUX 2—2 20rUXVVEIUY UZ 2=X
1
T°G,T =X 2VXYYXVZ 2=3 ZVVZU UZVVZ 2—2

1
G.G,T = XX*YY*XVE 2 = XVEU'UZV VL™ 2 = Tx?
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Balanced system/Balanced truncation

The balanced system is:
{Wr (k+1) = A.w,(k) + Byu(k)

y(k) = Cowy (k)
with A, = S*AT, B, = S*B, C, = CT

The balanced system may be rewritten as (the subscript 1 and 2 denoting
respectively a subspace of dimension p and n — p):

wrq (k + 1)] _ [Arll r12] [Wr1(k)] [ ] (k)
Wy, (k + 1) Arz1 Arazl lwy (]E)) B;
wpq (k
k) = rl
y( ) [ rl 7'2 Wiy (k)
The truncated system is:
W (k + 1) = AWy (k) + Bru(k)
y(k) = rlwrl(k)
The  impulse response  Z,(k) = CA¥TIB., and tranfer-function
Tyup(2) = Cpq(zl, — Ay11) "1 Byq are close to the initial ones: Z(k) = CA*~'B and
Tyu(z) = C(zI — A)™'B.



Balanced truncation:
error bounds

Error bounds:
With infinite Gramians, we have:

n
S <2 -2l <2 ) 3
J=p+1

where X; are the Hankel singular values.

Proof:
see Antoulas 2005.



Balanced truncation:
stability

Stability:
Any reduced (truncated) system A, obtained by balanced truncation (with infinite
Gramians) is stable.

Proof:
In the balanced basis, the infinite controllability Gramian verifies:
AGPA* — G +BB* =0

=>[Ar11 Ar21[21 O01[4711 ;21] [ -Brl - 1—0
A?"Zl ATZZ_ 0 22_ ;12 ;22 0 22 BT‘Z rl T’Z

[ ri1 r12] X O]f ;11 ;21] [ ri1 r12 ZlArll 214721
Ar21 r22 0 2:2 r12 r22 Ar21 r22- Z:2 r12 X AT‘ZZ
lAr11Z1Ar11 + Ar12224512 ?]
? ?



Balanced truncation:
stability

The upper left block is:

Ar1121A4711 + Ar12224512 — 21 + BBy =
Consider an eigenvalue/eigenvector:

A;llw — /’lW
Then:
W Ar11214711W + W A28 47,w —wEw + W' B By w
= (A2 = D) w*Sw+w* A, 5, A o, ww* B Biw = 0
=<0 >0 >0 >0
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Eigensystem Realization Algorithm (ERA)

1/ Gramians may be factored as G, = XX*, G, = YY™ with:
X=R,(4,B)=|B,AB,-, A" 1B ]
Y = [0,(C, A" = [C",A°C", -, (A)™1C]

CB CAB Z(1) Z2) -
CAB CA’B - Z(2) Z(3) ]

o
CA
CA?

2/Y*X = [B AB A2B ...] =

Can be obtained just from impulse response Z(k) = CA*~1B.
2 /Perform SVD of Y*X:
Y*X = USV* = U, 2 V.5 UrU, = V2V, = [
1 1

3/ Compute bases: T = XVTZT_E and S = YUT'Z;E

4 / The balanced system is:
{Wr(k + 1) = A,w,(k) + Bru(k)

y(k) = Cowy (k)
With A, = S*AT, B, = S*B, C, = CT

Can we obtain (4,, By, C,) just from impulse response Z(k)?



Eigensystem Realization Algorithm (ERA)

1 S CCA _1
1/ A, = S*AT =3 2U;Y*AXV,Z % =3 2U; ca A[B AB A2B ..JVE %=
1 [CAB CA®B 11 [ZQ) Z(3) 1
2. °Ur|CA’B CAPB - |VEI2=E7Ur|Z(3) Z(4) -|WE,°
' c1 " CB ]
* - * | * - «| CA _% «| CAB
2/B,=S*B=3%_2U;Y*B=2X 2U; Ca B=2X 2U; CA2B

1 1
Since XUy (Y*X) = 22V,
1

B, corresponds to the first column of ZEVT*.
1 1

3/C.=CT =CXV,2 2=[CB CAB (CA%B --|V,%°
1

1

Since (Y*X)V,.X, % = U,32.

1
C, corresponds to the first row of U, X?



Eigensystem Realization Algorithm (ERA)

ERA algorithm:
Let Z(k) = CA*~1B be the impulse response of a large-scale system.

If we perform the SVD of the Hankel matrix:
Z(1) Z(2)

2(2) Z(3) -|=USV' R UL Ul = ViV, =1

then, the balanced system is:
{wr(k + 1) = A,w,.(k) + Bu(k)
y(k) = CGwy(k)
where:
1

1/A, =% 2U;

1

qvz 2

r

Z(2) Z(3)
Z(3) Z(4)

1

2/ B, corresponds to the first column of ZEVT*
1

3/ C;- corresponds to the first row of UTZE



