
denis.sipp@onera.fr MEC651-Amplitude equations

1

Worksheet n°3: Multiple time-scale analysis and amplitude equations

1/ Direct numerical simulation of cylinder flow at Re=100

We solve the unsteady Navier-Stokes equations in perturbative form (𝑤 ≔ 𝑤0 + 𝑤) around a

cylinder flow at 𝑅𝑒 = 𝜈−1 = 100. The initial condition is the real part of a small amplitude unstable

global mode.

ℬ𝜕𝑡𝑤 + 𝒩𝑤0
𝑤 + ℒ𝑤 = −

1

2
𝒩(𝑤, 𝑤)

𝑤(0) = 𝛼Re(�̂�)

with :

𝑤 = (

𝑢
𝑣
𝑝

) , ℬ = (
1 0
0 0

) , 𝒩(𝑤1, 𝑤2) = (
𝑢1 ⋅ 𝛻𝑢2 + 𝑢2 ⋅ 𝛻𝑢1

0
) , 𝒩𝑤0

𝑤 = 𝒩(𝑤0, 𝑤),

ℒ = (
−𝜈Δ() ∇()
−∇ ⋅ () 0

)

The base-flow and the global mode are defined by:

1

2
𝒩(𝑤0, 𝑤0) + ℒ𝑤0 = 0

𝜆ℬ�̂� + (𝒩𝑤0
+ ℒ)�̂� = 0

In DNS/Mesh:

 FreeFem++ mesh.edp

In DNS/BF:

 FreeFem++ init.edp

 FreeFem++ newton.edp

In DNS/Eigs:

 FreeFem++ eigen.edp

In DNS/DNS:

 FreeFem++ init.edp // generate initial condition from small amplitude global mode

 FreeFem++ dns.edp // launch DNS simulation

 Octave plotlinlog(‘out_0.txt’,1,2,1) // represent energy as a function of time in fig 1

 Octave plotlinlin(‘out_0.txt’,1,4,2) // represent v velocity as a function of time

2/ Van der Pol Oscillator: multiple time-scale analysis

denis.sipp@onera.fr MEC651-Amplitude equations

2

The Van der Pol Oscillator corresponds to the following governing equations:

𝑤′′ + 𝜔0
2𝑤 = 2𝛿𝑤′ − 𝑤2𝑤′

𝑤(0) = 𝑤𝐼 , 𝑤′(0) = 0

where the (⋅)′ is the time-derivative, 𝑤𝐼 is the initial condition, 𝜔0 the frequency and 𝛿 the instability

strength. Here, we choose: 𝜔0 = 10, 𝛿 = 0.3 and 𝑤𝐼 = 0.01.

2a/ Numerical time-integration

We integrate in time the above equations. For this,

In VanDerPol:

 Octave pkg load all // load external packages for time integration, Fourier analysis, etc.

Octave vdp // integrate in time unforced Van der Pol equations

2b/ One time-scale approach

We try to approximate the solution by considering a small instability strength: 𝛿 = 𝛿𝜖, with 𝜖 ≪ 1

and 𝛿 = 𝑂(1). We look for an approximation of the solution with an expansion of the form:

𝑤 = 𝜖
1
2𝑦 and 𝑦 = 𝑦0 + 𝜖𝑦1 + ⋯.

We first try with only one time-scale: 𝑦(𝑡) = 𝑦0(𝑡) + 𝜖𝑦1(𝑡) + ⋯

The second-order solution is given by:

𝑤 = (�̃�𝑒𝑖𝜔0𝑡 + c. c.)

+ (
−3�̃�3 + 12𝛿�̃�

8𝜔0
𝑖𝑒𝑖𝜔0𝑡 +

i�̃�3

8𝜔0
𝑒3𝑖𝜔0𝑡 − (2𝛿�̃� − �̃�3) (

1 + 2𝑖𝜔0𝑡

4𝜔0
) 𝑖𝑒𝑖𝜔0𝑡 + c. c.)

�̃� =
𝑤𝐼

2

To represent this solution, in VanDerPol:

 Octave clf // clear all figures

 Octave vdp // integrate in time unforced Van der Pol equations

 Octave vdp_tlr // show first and second order approximations with one time-scale

2c/ Two time-scales approach

The two time-scale first-order solution is given by:

𝑤(𝑡) = (�̃�𝑒𝑖𝜔0𝑡 + c. c.)

with:

denis.sipp@onera.fr MEC651-Amplitude equations

3

𝑑�̃�

𝑑𝑡
= 𝛿�̃� −

1

2
�̃�3

�̃�(0) =
𝑤𝐼

2

To represent this solution, in VanDerPol:

 Octave clf // clear all figures

 Octave vdp // integrate in time unforced Van Der Pol equations

 Octave vdp_tlr // show first and second order approximations with one time-scale

 Octave vdp_mts // show first and second order approximations with two time-scales

3/ Van der Pol Oscillator with harmonic forcing

We consider the forced Van der Pol oscillator:

𝑤′′ + 𝜔0
2𝑤 = 2𝛿𝑤′ − 𝑤2𝑤′ + �̃� cos 𝜔𝑓𝑡,

where 𝜔𝑓 and �̃� are respectively the forcing frequency and the forcing amplitude. Here, we choose:

𝜔𝑓 = 25 and �̃� = 600. The first-order two time-scale solution is given by:

𝑤(𝑡) = 2�̃� cos(𝜔0𝑡 + 𝜙) +
�̃�

𝜔0
2 − 𝜔𝑓

2 cos 𝜔𝑓𝑡

with:

𝑑�̃�

𝑑𝑡
= [𝛿 −

1

4
(

�̃�

𝜔0
2 − 𝜔𝑓

2)

2

] Ã −
1

2
Ã3

To represent this solution, in VanDerPol:

 Octave clf // clear all figures

 Octave vdpf // integrate in time unforced Van Der Pol equations

Vary the forcing amplitude �̃� from 0 to 600 and observe in each case the resulting frequency

spectrum.

4/ Forced Navier-Stokes equations

We consider the Navier-Stokes equation in perturbative form (𝑤: = 𝑤0 + 𝑤) with a forcing term

acting on the momentum equations:

ℬ𝜕𝑡𝑤 + 𝒩𝑤0
𝑤 + ℒ𝑤 = 𝛿ℳ(𝑤0 + 𝑤) −

1

2
𝒩(𝑤, 𝑤) + (�̃�𝑒𝑖𝜔𝑓𝑡𝑓 + c. c).

Here:

denis.sipp@onera.fr MEC651-Amplitude equations

4

𝑤 = (

𝑢
𝑣
𝑝

) , ℒ = (
−𝜈𝑐Δ() ∇()
−∇ ⋅ () 0

) , ℳ = (
−Δ 0
0 0

).

The viscosity 𝜈 has been replaced by 𝜈 = 𝜈𝑐 − 𝛿, where 𝜈𝑐 is the critical viscosity which achieves

marginal stability of the linear dynamics 𝑅𝑒𝑐 = 𝜈𝑐
−1 = 46.6.

The base-flow is given by:

1

2
𝒩(𝑤0, 𝑤0) + ℒ𝑤0 = 0,

while �̃� and 𝜔𝑓 correspond respectively to the forcing amplitude and forcing frequency. The forcing

structure 𝑓 (acting solely on the momentum equations, so that ℬ𝑓 = 𝑓) is also given.

In the following, we consider a slightly supercritical regime (the Reynolds number is slightly above

the critical Reynolds number):

𝛿 = 𝜖𝛿, 𝜖 ≪ 1, 𝛿 = 𝑂(1),

and a small- amplitude forcing, which scales as:

�̃� = 𝜖
1
2𝐸, 𝐸 = 𝑂(1).

We look for an approximation of the solution under the form:

𝑤 = 𝜖
1
2 (𝑦0(𝑡, 𝜏 = 𝜖𝑡) + 𝜖

1
2𝑦1

2

(𝑡, 𝜏 = 𝜖𝑡) + 𝜖1𝑦1(𝑡, 𝜏 = 𝜖𝑡) + ⋯)

The second-order solution is given by:

𝑤 = (�̃�𝑒𝑖𝜔𝑐𝑡𝑦𝐴 + c. c) + (�̃�𝑒𝑖𝜔𝑓𝑡𝑦𝐸 + c. c) + 𝛿𝑤𝛿 + (�̃�2𝑒2𝑖𝜔𝑐𝑡𝑦𝐴𝐴 + c. c.) + |�̃�|
2

𝑦𝐴�̅� + |�̃�|
2

𝑦𝐸�̅�

+ (�̃��̃�𝑒𝑖(𝜔𝑐+𝜔𝑓)𝑡𝑦𝐴𝐸 + c. c.) + (�̃��̅̃�𝑒𝑖(𝜔𝑐−𝜔𝑓)𝑡𝑦𝐴�̅� + c. c.) + ⋯

With :

𝑖𝜔𝑐ℬ𝑦𝐴 + 𝒩𝑤0
𝑦𝐴 + ℒ𝑦𝐴 = 0

𝑖𝜔𝑓ℬ𝑦𝐸 + 𝒩𝑤0
𝑦𝐸 + ℒ𝑦𝐸 = 𝑓

𝒩𝑤0
𝑦𝛿 + ℒ𝑦𝛿 = ℳ𝑦0

2𝑖𝜔𝑐ℬ𝑦𝐴𝐴 + 𝒩𝑤0
𝑦𝐴𝐴 + ℒy𝐴𝐴 = −

1

2
𝒩(𝑦𝐴, 𝑦𝐴)

𝒩𝑤0
𝑦𝐴�̅� + ℒ𝑦𝐴�̅� = −𝒩(𝑦𝐴, �̅�𝐴)

𝒩𝑤0
𝑦𝐸�̅� + ℒ𝑦𝐸�̅� = −𝒩(𝑦𝐸 , �̅�𝐸)

2𝑖(𝜔𝑐 + 𝜔𝑓)ℬ𝑦𝐴𝐸 + 𝒩𝑤0
𝑦𝐴𝐸 + ℒy𝐴𝐸 = −𝒩(𝑦𝐴, 𝑦𝐸)

2𝑖(𝜔𝑐 − 𝜔𝑓)ℬ𝑦𝐴�̅� + 𝒩𝑤0
𝑦𝐴�̅� + ℒ𝑦𝐴�̅� = −𝒩(𝑦𝐴, �̅�𝐸)

denis.sipp@onera.fr MEC651-Amplitude equations

5

And:

𝑑�̃�

𝑑𝑡
= 𝜆𝛿�̃� − 𝜇�̃�|�̃�|

2
− 𝜋�̃�|�̃�|

2

where:

𝜆 =< �̃�𝐴, ℳ𝑦𝐴 > −< �̃�𝐴, 𝒩(𝑦𝐴, 𝑦𝛿)

𝜇 =< �̃�𝐴, 𝒩(𝑦𝐴, 𝑦𝐴�̅�) + 𝒩(�̅�𝐴, 𝑦𝐴𝐴) >

𝜋 =< �̃�𝐴, 𝒩(𝑦𝐴, 𝑦𝐸�̅�) + 𝒩(𝑦�̅� , 𝑦𝐴𝐸) + 𝒩(𝑦𝐸 , 𝑦𝐴�̅�) >

−𝑖𝜔𝑐ℬ�̃�𝐴 + �̃�𝑤0
�̃�𝐴 + ℒ̃�̃�𝐴 = 0

< �̃�𝐴, ℬ𝑦𝐴 > = 1

4a/ In AmplEq/Mesh:

 FreeFem++ mesh.edp // generate mesh

In AmplEq/BF:

 FreeFem++ init.edp // generate initial guess for Newton iterations

 FreeFem++ newton.edp // Newton iteration

In AmplEq/Eigs:

 FreeFem++ eigen.edp // compute global mode

FreeFem++ eigenadj.edp // compute adjoint global mode

FreeFem++ norm.edp // generate scaled adjoint global mode

In AmplEq/WNL:

FreeFem++ udelta.edp // generate modification of base-flow due to increase in Reynolds

number

FreeFem++ uAA.edp // generate second harmonic due to interaction of global mode with

himself

FreeFem++ uAAb.edp // generate zero-harmonic due to interaction of global mode with

adjoint of himself

 FreeFem++ lambda.edp // compute 𝜆 coefficient of Stuart-Landau equation

 FreeFem++ mu.edp // compute 𝜇 coefficient of Suart-Landau equation

FreeFem++ forcing.edp // define external forcing (spatial structure anf frequency)

FreeFem++ uE.edp // coumpute response due to external forcing

denis.sipp@onera.fr MEC651-Amplitude equations

6

FreeFem++ uAE.edp // compute AE-harmonic due to interaction of response to

external forcing with global mode

4b/ Complete program uAEb.edp to compute the 𝐴�̅� harmonic due to the interaction of the global

mode with the adjoint of the response due to external forcing.

4c/ Complete program uEEb.edp to compute the zero-harmonic due to the interaction of the

external forcing response with the conjugate of himself.

4d/ Complete program pi.edp to compute the 𝜋 coefficient.

5/ Forced Direct numerical simulation

We integrate in time the forced Navier-Stokes equations at 𝑅𝑒 = 𝜈−1 = 100:

ℬ𝜕𝑡𝑤 + 𝒩𝑤0
𝑤 + ℒ𝑤 = −

1

2
𝒩(𝑤, 𝑤) + (�̃�𝑒𝑖𝜔𝑓𝑡𝑓 + c. c)

where:

𝑤 = (

𝑢
𝑣
𝑝

) , ℒ = (
−𝜈 Δ() ∇()
−∇ ⋅ () 0

)

In DNS/DNS:

 FreeFem++ dnsf.edp // launch forced DNS simulation

 Octave plotlinlog(‘out_4000.txt’,1,2,1) // represent energy as a function of time in fig 1

 Octave plotlinlin(‘out_4000.txt’,1,4,2) // represent v velocity as a function of time in fig 2

 Octave spectrum // compare spectrum with and without control

