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Optimal triggering of jet bifurcation:
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The present article aims at optimising the spread of a bifurcating jet: a jet that
combines axisymmetric and helical forcing to achieve increased mixing in a
preferential plane. Parekh et al. (Tech. Rep. TF-35, Stanford University, 1988)
explained such a bifurcation as the result of nonlinear interaction between ring
vortices (triggered by m = 0 axisymmetric forcing), shifted off-axis in alternate
directions (owing to m= 1 helical forcing). Following this idea, we linearly optimise
the periodic helical forcing to be applied at the inlet, in order to maximally displace
the ring vortices of an axisymmetrically forced jet. Two norms are introduced for
evaluating the effect of helical forcing onto the helical response: the standard L2-norm
and a semi-norm reflecting the off-axis vortex displacement. The linear results show
one dominant forcing mode over the entire Strouhal band studied (0.35 6 St 6 0.8),
with a large gain separation from suboptimals. The dominant forcing is mainly
radial, independent of the chosen response norm, and provides a gain at least
five times larger than what was achieved by previous ad hoc forcing strategies.
Superposition of base flow and linear results show the alternate shifting and twisting
provoked by the the small-amplitude helical forcing, which is an essential ingredient
for triggering jet bifurcation. When tested in three-dimensional direct numerical
simulations, low-amplitude helical forcing achieves efficient bifurcation at all Strouhal
values studied. At high Strouhal numbers, an additional central branch emerges in
the mean flow, leading to trifurcation. Across all frequencies, compared with ad hoc
forcing strategies, the optimal forcing triggers a much stronger and robust spreading,
by moving the bifurcation point upstream. As a result, bifurcating jets are observed
over a much larger Strouhal band (0.35 6 St 6 0.8) compared with the band where
ad hoc forcing achieves bifurcation in our setting (0.4 6 St 6 0.5).

Key words: mixing enhancement, vortex interactions, jets

1. Introduction
Jet control is a long-standing research problem, generally motivated by two main

purposes: increasing jet mixing or reducing jet noise. These two objectives are usually
opposed.

† Email address for correspondence: leopold.shaabani-ardali@ladhyx.polytechnique.fr
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One effective way of enhancing jet mixing is to increase the global jet spreading,
and thus the size of its mixing layer region. To do so, one relies on the leading
large global structures of the jet, the vortex rings (Hussain & Zaman 1980; Zaman
& Hussain 1980). Imposing an axial forcing at the jet inlet controls the frequency at
which the vortex rings are generated, and therefore their spacing. Additional actuation
of the vortex ring dynamics then allows the jet spreading and mixing to be further
controlled. Several attempts that have been carried out in the literature are now
detailed.

A first possibility is to rely on the pairing instability of vortices. At some parameter
settings, an axisymmetric time-periodic array of vortices is globally unstable in a
Floquet sense (Floquet 1883; Shaabani-Ardali, Sipp & Lesshafft 2019): ring vortices,
while being advected downstream, merge two by two, leading to thicker ring vortices
and to a larger mixing region. In stable cases, it is still possible to trigger pairing by
adding an axisymmetric subharmonic forcing at the inlet (Hussain & Zaman 1980;
Zaman & Hussain 1980). Depending on the phase shift between the fundamental
and the subharmonic forcing, such forcing will either promote or inhibit pairing, as
shown by Arbey & Ffowcs Williams (1984) or Raman & Rice (1991).

Another, more effective possibility is to generate bifurcating and blooming jets.
These jets, first studied by Lee & Reynolds (1985), are the result of jet forcing
that combines axisymmetric and helical components, at frequencies fa and fh. The
difference between these two kinds of flow response lies in the ratio of frequencies
Rf = fa/fh. In the case of jet bifurcation, this ratio is fixed at two: each vortex
generated is alternatively shed to the right and to the left, and then, by mutual
induction, they further depart from the jet axis, leading to the scenario shown in
figure 1. This jet strongly flares in the shedding plane, called hereafter the bifurcating
plane, whereas it does not display any additional flaring in the normal plane, called
the bisecting plane. This bifurcation scenario, introduced by Lee & Reynolds (1985)
has been analysed physically by Parekh, Reynolds & Mungal (1987), Parekh, Leonard
& Reynolds (1988). They stated that ‘the shear layer rolls up into a periodic array of
vortex rings in response to the axial forcing. The helical or transverse forcing displaces
these rings eccentrically. The resulting staggered array of rings is unstable. As a result,
the rings tilt away from each other until initially adjacent rings eventually propagate
along two different trajectories’, as shown in figure 2. Parekh et al. (1988) have shown
that the bifurcating jet mechanism can also be triggered at large Reynolds number,
and is not restricted to small Reynolds values. By fixing Rf to three, trifurcating jets
have been observed (Lee & Reynolds 1985), but they do not display as much flaring
as bifurcating jets.

This phenomenon, quite promising for mixing enhancement, has been deeply
analysed in a series of papers. A comprehensive review can be found in Reynolds
et al. (2003). Some authors have tried to extend this method to compressible settings
(Tyliszczak & Boguslawski 2006, 2007) or to other methods of forcing, such as
flapping motions (Danaila & Boersma 1998, 2000; da Silva & Métais 2002; Gohil,
Saha & Muralidhar 2010; Gohil & Saha 2019). From all these studies, it can be
concluded that a convenient band of axisymmetric forcing Strouhal numbers to
observe bifurcating jets is 0.4 . St . 0.6, with peak spreading occurring around
Sta = 0.5. The existence of this band has been early understood by Lee & Reynolds
(1985): ‘When the vortex rings are spaced far apart, the interaction between them is
small. When the spacing is smaller, the interaction is stronger. When the rings are
spaced closer and closer, a critical value is reached where the rings turn and run into
each other without ever escaping’.
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Optimal triggering of jet bifurcation 885 A34-3

(a) (b)

FIGURE 1. Bifurcating (a) and bisecting (b) plane views of a bifurcating jet at Re= 4300
with Rf = 2. From Lee & Reynolds (1985).

FIGURE 2. Schematic of a bifurcating jet, from Lee & Reynolds (1985).

Nevertheless, other ways of achieving bifurcating jets have been developed in
the 1990s. Pfizenmaier, Simon & Monkewitz (1993) relied, with a single frequency
forcing, on the spiral instability mode of a jet diffusion flame to achieve a flapping
motion. Another method employs radial forcing. Experimentally, this is achieved
by placing fluidic actuators along a ring around the jet inlet. These actuators
pulse flow at a given frequency and are in phase opposition. Parekh et al. (1996)
have shown experimentally in a compressible setting (Mach number Ma = 1.47)
that with a minimal mass flux, of about 1 % of the mean flow flux, such forcing
dramatically changed the dynamics of the jet and its mixing properties. In similar
settings, Freund & Moin (1998, 2000) have shown numerically that such actuation
was able to drastically reduce the size of the potential core and to enhance mixing
for all the metrics they considered, such as mean mass flux or scalar dissipation.
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Their instantaneous flow contours resemble traditional bifurcating jet flows, with
vortices shed in a preferential plane entraining vortices. Simulations have also been
carried out for such forcing behind real jet engines (Smith, Cain & Chenault 2001).
In these studies, the most receptive Strouhal numbers Sth are of the order of 0.2–0.25.
This frequency is similar to the helical forcing frequencies of the bifurcating jets with
axial forcing (Sth of the order of 0.2–0.3), reinforcing the idea that similar mechanisms
play a role in these two flows. Still another method relies on both passive and active
control techniques, by combining axisymmetric forcing (that triggers vortex rings)
with nozzle modifications to induce non-axisymmetric perturbations on the rings.
Several shapes have been tested, such as chevrons (vortex generators) in the nozzle
(Zaman, Reeder & Samimy 1994; Zaman & Raman 1997), stepped and sawtooth
nozzles (Longmire & Duong 1996), or inclined nozzles (Webster & Longmire 1997).

For both of these methods, bifurcating two-frequency forcing and radial forcing,
some studies have attempted to optimise the spreading in bifurcating and blooming
jets. Koumoutsakos, Freund & Parekh (1998) have tried to apply evolution strategies
to optimise the bifurcating jet generated by a radial forcing. They also used vortex
filament algorithms to optimise blooming jets. However, instead of carrying out global
optimisation, they optimised the parameters (amplitude, frequency, phase) of a given
forcing shape. Similarly, Hilgers & Boersma (2001) have applied genetic algorithms
to flapping and bifurcating perturbations. In all of these studies, the computational
cost was prohibitive, owing to the cost of three-dimensional resolved direct numerical
simulations (DNS) and the large numbers of runs needed for an optimisation. Several
objective functions have been introduced: the volume integral of radial velocity,
the passive scalar concentration in the outer domain or the radial displacement of
vortices, and difficult compromises had to be made to mitigate the computational
burden of such computations. In a later study, Tyliszczak & Geurts (2014) carried
out a parametric analysis of the bifurcating jet, at Re = 4300 and 10 000. They
studied the influence of the amplitude, the forcing frequency and the phase of the
forcing and of the turbulence level. Their main conclusions are, for the bifurcating jet,
that the forcing amplitude must be larger than the inlet turbulence level, and that a
larger forcing amplitude leads to bifurcation over a wider range of Strouhal numbers.
Experimentally, Wu et al. (2018) carried out an optimisation of mixing in a turbulent
jet, based on machine learning control (MLC). This flow was actuated by a single
minijet inside the nozzle, oriented in the radial direction. Through the automated MLC
procedure, it was found that the optimal forcing frequency, which led to maximal
mixing, corresponded to exactly half the frequency that dominated the unforced jet,
associated with axisymmetric vortex formation. The optimal radial actuation of this
turbulent jet triggered a clear bifurcation (see figure 10 of Wu et al. 2018).

In the case of two-frequency forcing strategies, blooming jets occur when Rf = fa/fh
is no longer integer: as fa and fh are no longer commensurate, there is no preferential
plane for bifurcation, and the vortices are evolving in the full three-dimensional space.
Therefore, the jet envelope becomes conical, ensuring maximum mixing of the jet,
as shown in figure 3. Lee & Reynolds (1985) have found that blooming, in their
experimental setting, occurs for 1.6 < Rf < 3.2 and 0.35 < Sta < 0.75. This scenario
has gained attention recently with the articles of Tyliszczak (2015) and Gohil, Saha
& Muralidhar (2015). Both explain that, although at first glance the rings seem to
cover uniformly all azimuthal directions, they form a distinct number of branches that
can be directly linked to Rf . Recently, the forcing of organised multi-armed jets with
up to 13 branches has been investigated by Tyliszczak (2018). The frequency ratio
also determines the spreading angle between two consecutive vortices; if these vortices
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Optimal triggering of jet bifurcation 885 A34-5

(a) (b)

FIGURE 3. Side (a) and top (b) view of a blooming jet at Re= 4300 with Rf = 2.4. From
Lee & Reynolds (1985).

are on two sufficiently separated branches, these branches will not interact with one
another, leading to a clear blooming.

In the present study, our purpose is to find the optimal helical inlet forcing for
triggering jet bifurcation. To do so, we will rely on the bifurcation mechanism of Lee
& Reynolds (1985) and Parekh et al. (1988): in the vicinity of the inlet, the vortex
rings do not undergo pairing and do not exhibit large displacement away from their
axisymmetric position. As a consequence, we consider the helical-forcing-induced
displacements as linear perturbations of the axisymmetric periodic state. We therefore
seek the optimal linear helical inlet forcing that maximally shifts the first vortex
rings away from the axis. The base flow we consider is the time-periodic array of
vortex rings generated with axisymmetric forcing alone. Then, we investigate which
form of forcing is best suited to promote jet bifurcation, axial (Lee & Reynolds
1985) or radial blowing (Freund & Moin 1998), and the role of Strouhal number and
optimisation parameters in the result. Throughout the study, the Reynolds number is
fixed at 2000, moderate enough to assume a laminar flow, and large enough to be
compared with experimental results, because it has been shown that the bifurcation
phenomena prevails over a wide range of Reynolds numbers.

The article is divided into three parts. In § 2, the optimisation procedure is laid out
in detail, with an emphasis on the base flow used and on the different norms selected
for the optimisation. In § 3, the results of the linear optimisation are discussed, in
particular with regard to the existence of one strong dominant forcing mode. The
role of the different parameters involved and the implications for the physics of
jet bifurcation are also investigated. Finally, in § 4, the linear optimisation results
are put to the test in three-dimensional nonlinear simulations, and these results are
then compared with non-optimal ad hoc bifurcating forcing commonly used in the
literature.

2. The optimisation procedure
2.1. Decomposition of the flow

Following the idea of the bifurcation scenario of Lee & Reynolds (1985) and Parekh
et al. (1988), as recalled in § 1, we focus on the region close to the nozzle, where
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vortices are only slightly perturbed out of an axisymmetric configuration. To account
for this slight perturbation, we decompose the flow velocity u(r, θ, z, t) as the sum of
two components U(r, z, t) and u′(r, θ, z, t).

On the one hand, U(r, z, t) represents the nonlinear axisymmetric unpaired flow that
would occur without helical forcing at the jet inlet, such as displayed in figures 5(b,c).
This flow, triggered by an axisymmetric harmonic (at frequency ω) axial forcing at
the inlet (plane z= 0), is time-periodic. Details about the calculation of U are given
in § 2.2.

On the other hand, u′(r, θ, z, t) represents the real non-axisymmetric perturbations
of the flow owing to a prescribed non-axisymmetric inlet forcing. In the optimisation,
we assume that u′ is the linear response to helical inlet forcing, with both m= 1 and
m = −1 components. By linearity, this implies that the perturbation is itself helical;
we then introduce an m= 1 complex part of the perturbation u1(r, z, t), such that

u′(r, θ, z, t)= u1(r, z, t)eiθ
+ c.c.= u1(r, z, t)eiθ

+ u1(r, z, t)e−iθ . (2.1)

For bifurcating jets, it is required that the frequency of the helical forcing is half
the frequency ωf of the axisymmetric forcing, as shown in § 1. Therefore, we can
introduce the complex subharmonic helical inlet forcing functions u1f ,1(r) and u1f ,2(r)
such that

u1(r, z= 0, t)= u1f ,1(r) cos(ωf t/2)+ u1f ,2(r) sin(ωf t/2), with u1f ,1(r), u1f ,2(r) ∈C3.
(2.2)

This is equivalent to prescribing a total real perturbation field u′(r, θ, z, t) equal to

u′(r, θ, z= 0, t) = 2
[
Re(u1f ,1) cos(θ) cos(ωf t/2)− Im(u1f ,1) sin(θ) cos(ωf t/2)

+ Re(u1f ,2) cos(θ) sin(ωf t/2)− Im(u1f ,2) sin(θ) sin(ωf t/2)
]
, (2.3)

where Re(·) and Im(·) denote real and imaginary parts, respectively. Therefore, each
forcing component has four functional real degrees of freedom, corresponding to two
complex ones. More details on the optimisation are given in § 2.3.

For a better understanding of such forcing, figure 4 represents some contours
defined by isovalues of forcing that can be applied. We understand that when u1f ,1
and u1f ,2 have a constant and equal phase, a constant symmetry axis in the inlet plane
is introduced. This symmetry axis defines the bifurcating and bisecting planes. In the
following, it will be found that such a constant phase condition is characteristic for
the optimal forcing.

2.2. Time-periodic base flow
2.2.1. Two different behaviours

Axisymmetric harmonic forcing at the nozzle of a laminar round jet excites, over a
wide range of frequencies, a linear shear instability of the steady flow state, leading
to exponential growth of the perturbation amplitude along the axial direction. As
the amplitude reaches nonlinear levels, the shear layer rolls up into a regular street
of vortex rings, which form and convect at the frequency of the applied forcing.
Depending on flow parameters and forcing frequency, these vortices may undergo
subsequent pairing (Hussain & Zaman 1980; Zaman & Hussain 1980; Ho & Huerre
1984; Shaabani-Ardali et al. 2019), and if the ambient flow is sufficiently quiet and
the harmonic forcing is well-controlled, this pairing takes place in a perfectly regular
fashion.
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(d)

FIGURE 4. Examples of isovalues of perturbation fields in the inlet plane. Here U0
is defined in (2.6). (a) u′(r, θ, z = 0, t) = U0(r) cos(θ) cos(ωf t/2). In this case, a
constant vertical symmetry plane is observed. (b) u′(r, θ, z = 0, t) = U0(r)(cos(θ) +
sin(θ)) cos(ωf t/2)/

√
2, which can be simplified as u′(r, θ, z = 0, t) = U0(r) cos(θ −

π/4) cos(ωf t/2). Compared to figure 4(a), a π/4 azimuthal shift is introduced, shifting
azimuthally the symmetry plane. (c) u′(r, θ, z = 0, t) = U0(r) cos(θ)(cos(ωf t/2) +
sin(ωf t/2))/

√
2, which can be simplified as u′(r, θ, z = 0, t) = U0(r) cos(θ) cos(ωf t/2 −

π/4). Compared to figure 4(a), a π/4 time shift is introduced. The symmetry plane
is left unchanged, constant in time. (d) u′(r, θ, z = 0, t) = U0(r)(cos(θ) cos(ωf t/2) +
sin(θ) sin(ωf t/2))/

√
2, which can be simplified as u′(r, θ, z= 0, t)=U0(r) cos(θ − ωf t/2).

Compared to figure 4(a), the forcing is rotating in time. Hence, so does the symmetry
plane.

In cases where pairing occurs, two neighbouring vortices merge into one, such that
the passage frequency of vortices downstream of the pairing location is exactly half
that of the imposed forcing. If the forcing is characterised by the time period Tf , such
that ωf = 2π/Tf , the ‘paired state’ is globally 2Tf -periodic (Tf -periodic upstream of
the pairing and 2Tf -periodic downstream). An example of this behaviour, obtained by
DNS, is shown in figure 5(a).
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2
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0

r
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1r

0 3 6 9 12 15
z

0 2 4 6 8 10

(a)

(b)

(c)

FIGURE 5. Vorticity snapshots of the periodic paired and unpaired states, obtained
naturally for two different parameter settings. Simulation details, forcing amplitude,
Reynolds and Strouhal numbers are defined in § 2.2.2. (a) Paired state (2Tf -periodic) at
St= 0.6, Re= 2000 and A= 5 % at t= 3Tf /2. (b) Unpaired state (Tf -periodic) at St= 0.6,
Re= 1300 and A= 5 % at t= Tf /2. (c) Unpaired stabilised state (Tf -periodic) at St= 0.6,
Re= 2000 and A= 5 % at t= Tf /2.

Another case at different parameter settings, where no pairing is found to occur, is
shown in figure 5(b). Vortices roll up close to the nozzle and advect downstream, until
they are dissipated by viscosity. Such a flow state is (globally) Tf -periodic and will
be called hereafter an ‘unpaired state’.

It has been shown (Shaabani-Ardali et al. 2019) that the unpaired state exists for
all parameter values, but that this state may be Floquet-unstable (Floquet 1883). In
particular, it was found that, when unstable, the most unstable mode was always
subharmonic at ωf /2, leading after destabilisation to a paired state.

In the case of a bifurcating jet, none of the vortices undergo pairing, as shown
in figures 1 and 2. In addition, the physical mechanism of Parekh et al. (1988)
explains bifurcation by an alternating shifting of the ring vortices, which is achieved
through helical forcing at half the vortex frequency. In the presence of pairing,
paired vortices convect at the same frequency as the helical forcing, cancelling the
alternating behaviour. Therefore, for the optimisation of the helical forcing, it is
natural to seek an unpaired base flow, even if this flow may be unstable with respect
to axisymmetric perturbations (Shaabani-Ardali et al. 2019). To do so, a simple
stabilisation tool (Shaabani-Ardali, Sipp & Lesshafft 2017) is used to compute these
unpaired states, which consists in adding a forcing term of the form

f =−λ(U(t)−U(t− Tf )) (2.4)

to the right-hand side of the Navier–Stokes equations (2.5). This allows to suppress
2Tf -periodic fluctuations on Tf -periodic dynamics. In this framework, λ is a forcing
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Optimal triggering of jet bifurcation 885 A34-9

parameter that needs to be prescribed; an optimal value of 0.044ωf has been identified
by Shaabani-Ardali et al. (2017). In the same way as the selective frequency damping
technique for steady flows (Åkervik et al. 2006), the forcing term vanishes as the
system converges towards a Tf -periodic unpaired state, such that the recovered state
is a consistent solution of the unforced Navier–Stokes equations. The results of this
technique are shown in figure 5(c), where the stabilised flow is plotted.

2.2.2. Configuration, governing equations and numerical discretisation
DNS were carried out using Nek5000, an incompressible spectral element code

(Fischer et al. 2008). An axisymmetric laminar jet is described in cylindrical
coordinates (z, r), z being the main flow direction and r being the radial distance from
the jet axis. The flow is assumed to be governed by the incompressible Navier–Stokes
equations with zero azimuthal velocity, written in dimensionless form as

∂U
∂t
+ (U · ∇)U=−∇P+

1
Re
1U, ∇ ·U= 0. (2.5)

The velocity U has axial and radial components U and V , and P denotes pressure.
The jet diameter D and the inlet centreline velocity U are used to render the problem
non-dimensional, defining the Reynolds number as Re=UD/ν, with ν the kinematic
viscosity. The computational domain extends over 15× 5 diameters in the axial and
radial directions, and it is discretised with 6600 spectral elements, each containing 64
mesh points. Boundary conditions are specified as follows.

(i) In the inlet plane, z = 0, a hyperbolic-tangent velocity profile is imposed. In
dimensionless form, its amplitude is modulated in time as

U(r, t) =
1
2

{
1− tanh

[
1

4θ0

(
r−

1
4r

)]}
(1+ A cos(ωf t))ez

= U0(r)(1+ A cos(ωf t))ez, (2.6)

where A is the forcing amplitude of the jet, θ0 is the initial dimensionless mixing
layer thickness and ωf is the dimensional forcing frequency. The forcing period
is given by Tf = 2π/ωf , and the Strouhal number is defined as St=ωf D/(2πU).

(ii) On the centreline of the jet, r=0, axisymmetric boundary conditions are imposed,

∂U
∂r
= V =

∂P
∂r
= 0. (2.7)

(iii) In the outlet plane, z= Zm = 15, and on the outer radial boundary, r= Rm = 5, a
stress-free outflow condition is applied,

−Pn+
1

Re
(∇U) · n= 0, (2.8)

with n the normal vector at the boundary.

The flow configuration is thus characterised by the Reynolds number Re, the Strouhal
number St, the dimensionless mixing layer thickness θ0 and the forcing amplitude A.
In this study, we keep the jet parameters fixed by considering a round jet at Re =
2000 with a mixing layer thickness of θ0= 0.025. The amplitude of the axisymmetric
forcing is also kept fixed at A= 0.05, whereas the forcing Strouhal number is varied.
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101

FIGURE 6. For different mesh resolutions (polynomial order n of individual spectral
elements), the norm e(t) of the residual difference between the flow velocity at time t
and time t− Tf is traced as a function of t. These are the stabilised computations (with
source term (2.4)) performed to find the periodic base flow at Re = 2000 and St = 0.6.
The converged setting n= 8 is used in the following.

For all considered Strouhal numbers, convergence towards a periodic unpaired base
state has been achieved. Shaabani-Ardali et al. (2019) found that the band 0.56 St 6
0.8 is linearly unstable to subharmonic perturbations that lead to pairing; however,
the time-delay feedback stabilisation in the present calculations successfully yields
periodic unpaired base states over the entire considered range of Strouhal numbers.

Numerical mesh convergence in these calculations, for the example case St = 0.6,
is demonstrated in figure 6 by comparing the evolution of residuals in the stabilised
computations for different spectral polynomial orders (n= 4, 6, 8 and 10). A higher
order is equivalent to a higher number of collocation points within each spectral
element. The plotted quantity e(t) in figure 6 is the norm of the difference between
the flow states at time t and at time t − Tf , as defined in Shaabani-Ardali et al.
(2017). It is seen that all orders yield the same convergence of the stabilisation
routine; between resolutions n > 6, the flow states at each instant in the simulations
are practically identical. The order n= 8 is used in all following computations.

2.3. Optimisation of the helical forcing
2.3.1. Equations governing helical perturbations

Before writing the linearised Navier–Stokes equations, the m= 1 perturbation field
(u1, p1) from (2.1) is rewritten as (u2, p2) with u2 = (u1,r, iu1,θ , u1,z)

t and p2 = p1 in
order to remove imaginary coefficients. The linearised Navier–Stokes equations for the
perturbation (u2, p2) around the T-periodic base flow U(r, z, t) then read

1
r
∂

∂r
(ru2,r)+

1
r

u2,θ +
∂u2,z

∂z
= 0, (2.9)

∂u2,r

∂t
+Ur

∂u2,r

∂r
+ u2,r

∂Ur

∂r
+Uz

∂u2,r

∂z
+ u2,z

∂Ur

∂z
=−

∂p2

∂r
+

1
Re
∆ru2, (2.10)
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∂u2,θ

∂t
+Ur

∂u2,θ

∂r
+Uz

∂u2,θ

∂z
+

Uru2,θ

r
=

1
r

p2 +
1

Re
∆θu2, (2.11)

∂u2,z

∂t
+Ur

∂u2,z

∂r
+ u2,r

∂Uz

∂r
+Uz

∂u2,z

∂z
+ u2,z

∂Uz

∂z
=−

∂p2

∂z
+

1
Re
∆zu2, (2.12)

with the Laplacian in cylindrical coordinates

∆ru2 =
1
r
∂

∂r

(
r
∂u2,r

∂r

)
+
∂2u2,r

∂z2
−

2u2,r

r2
−

2u2,θ

r2
, (2.13)

∆θu2 =
1
r
∂

∂r

(
r
∂u2,θ

∂r

)
+
∂2u2,θ

∂z2
−

2u2,θ

r2
−

2u2,r

r2
, (2.14)

∆zu2 =
1
r
∂

∂r

(
r
∂u2,z

∂r

)
−

u2,z

r2
+
∂2u2,z

∂z2
. (2.15)

The following boundary and compatibility conditions are imposed:

u2 = u2f ,1(r) cos(ωf t/2)+ u2f ,2(r) sin(ωf t/2) at z= 0, (2.16)
∂u2,r

∂r
=
∂u2,θ

∂r
= u2,z = 0 at r= 0, (2.17)

u2,r + u2,θ = 0 at r= 0, (2.18)
1

Re
∂u2,r

∂r
− p=

∂u2,θ

∂r
=
∂u2,z

∂r
= 0 at r= Rm, (2.19)

1
Re
∂u2,z

∂z
− p=

∂u2,r

∂z
=
∂u2,θ

∂z
= 0 at z= Zm, (2.20)

with u2f ,1 and u2f ,2 the corresponding inlet forcing modified from u1f ,1 and u1f ,2. In
this new formalism, equations for u2 only involve real coefficients, which is much
more convenient for our numerical computations. The stress-free conditions (2.19),
(2.20), consistent with the Nek5000 boundary treatment (2.8), arise as the ‘natural
boundary conditions’ (see § 10.2.4 in Dick 2009) in this finite-element formulation.
Their quality as non-reflecting outflow conditions have been examined by Theofilis
(2017) and by Lesshafft (2018).

2.3.2. Optimisation procedure
We aim to find the optimal inlet forcing that maximally shifts the vortices off the

axis, at a given optimisation time To, per unit input energy. Formally, we want to solve

max
‖u′(r,θ,z=0,t)‖f=1

‖u′(r, θ, z, t= To)‖, (2.21)

with To−→∞. Again, the forcing u′(r, θ, z= 0, t) is assumed periodic with frequency
ωf /2 (see (2.3)). The different norms used for forcing and response are detailed
in § 2.4.

As will be demonstrated in § 3, this problem is well-posed, because the response
converges towards an ωf /2-periodic limit cycle when To −→∞. This shows that the
base flow is stable with respect to m= 1 subharmonic perturbations.

If the base flow were steady, the forced equations for linear perturbations could be
written as

∂u′

∂t
= Lu+ f̂ eiωt, (2.22)
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which would lead to a traditional resolvent analysis (Schmid 2007). As in our case
L depends on t, this type of analysis is not possible. However, several algorithms are
available for the problem at hand.

First, a classical direct-adjoint algorithm, already employed for periodic-flow
optimal perturbation analysis by Blackburn, Sherwin & Barkley (2008), can be used.
However, in the present optimisation, the flow perturbation field u2 is two-dimensional,
whereas the prescribed inlet forcing distributions u2f ,1(r) and u2f ,2(r) are only
one-dimensional. Therefore, if a direct-adjoint calculation is carried out, the adjoint
field eventually needs to be projected on the one-dimensional inlet, and extra care
needs to be taken to ensure that this is done properly (see Boujo & Gallaire 2015).

Another technique relies on the decomposition of the linearised operator, the forcing
and response into Fourier components, and to solve the equations in Fourier space, as
it is done in harmonic-balance methods. This has not been attempted here because of
the considerable changes needed in the code compared with a standard time-stepping
method, and because of the strong stiffness of these Newton-like problems.

In this work, the optimisation is carried out through a classical direct time-marching
scheme detailed in § 2.3.3. A basis of forcing functions is chosen and each individual
basis function is advanced in time. As the forcing only varies along the single radial
dimension, a 300-dimensional basis has been found to be sufficient for an accurate
resolution of the forcing space. Once time-stepping is carried out, thanks to linearity,
the optimal combination of all 300 forcing vectors is calculated. This technique has
several advantages compared with the two mentioned previously.

First, because the time-stepping and the optimisation are uncoupled in this process,
many optimisation parameters, such as the final time To, the norm chosen for the
optimisation or other norm-related parameters, do not need to be fixed beforehand.
These can be adjusted afterwards with the time-stepping results in order to check the
dependence on these technical parameters. Changes in these hyper-parameters can be
made almost for free.

Second, in our case the time-marching relies on an implicit scheme based on matrix
inversions (see § 2.3.3); as the base flow changes in time, the matrix needs to be
recalculated at every time step, requiring a significant computational effort. Therefore,
time-marching N�1 vectors simultaneously, instead of one at a time for direct-adjoint
optimisation, saves computational time. In addition, our approach removes the need to
compute the adjoint part, thereby saving additional time.

Finally, compared with harmonic-balance techniques, which only capture the infinite
time-horizon behaviour, our technique also allows to resolve transient dynamics.

2.3.3. Implementation
The evolution of the perturbation equations defined in § 2.3.1 is calculated using a

fully implicit finite-difference time-stepping scheme of second order, implemented in
the finite-element solver FreeFem++ (Hecht 2012). The mesh has the same size and
resolution as that used in the Nek5000 calculations. We use P2 finite elements for the
velocity perturbation, whereas P1 finite elements are used for the pressure.

Once time-stepping is completed, the calculation of the optimal forcing combination
can be done easily with Octave/Matlab routines. The resulting optimal forcing and
response fields from this combination can then be obtained in FreeFem++.

This study is carried out for 10 values of the Strouhal number, between 0.35 and
0.8 in increments of 0.05, at a Reynolds number of 2000.
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2.4. Forcing and response norms
In (2.21), the norms used for the forcing and for the response need to be specified.
For the forcing, we consider the energy (L2) norm, whereas for the response, two
norms are introduced: the energy (L2) norm, and a norm based on the displacement
of vortices.

Before going any further, let us recall some notation of scalar products. The scalar
product of two real numbers x1, x2 reads 〈x1, x2〉 = x1x2. The scalar product of two
complex numbers z1 and z2 is defined as 〈z1, z2〉 = z1z2. Subsequently, if a= (ai)i and
b= (bi)i are two vectors represented in an orthonormal basis, their scalar product is
〈a, b〉 =

∑
i〈ai, bi〉. In the following, u′ and v′ are real vectors corresponding to real

perturbation fields, whereas u2 and v2 are complex vectors corresponding to the helical
mode m= 1.

2.4.1. L2 norm for the forcing
For the forcing u′, the standard L2 energy norm is used. This norm is derived from

the following scalar product, which involves an integration over an entire subharmonic
forcing period 2Tf :

〈u′, v′〉f =
1

2Tf

1
2π

∫ 2Tf

0

∫ 2π

0

∫ Rm

0
r〈u′(r, θ, z= 0, t), v′(r, θ, z= 0, t)〉 dr dθ dt, (2.23)

=

∫ Rm

0
r
(
〈Re(u2f ,1),Re(v2f ,1)〉 + 〈Im(u2f ,1), Im(v2f ,1)〉

+ 〈Re(u2f ,2),Re(v2f ,2)〉 + 〈Im(u2f ,2), Im(v2f ,2)〉
)

dr, (2.24)

=
1
2

∫ Rm

0
r(〈u2f ,1, v2f ,1〉 + 〈u2f ,1, v2f ,1〉 + 〈u2f ,2, v2f ,2〉 + 〈u2f ,2, v2f ,2〉) dr. (2.25)

This scalar product is different from the standard scalar product for complex numbers.
While this must be kept in mind during the optimisation process, the norm it induces
for the forcing u′ is the standard L2 norm:

‖u′‖2
f =

∫ Rm

0
r(〈u2f ,1, u2f ,1〉 + 〈u2f ,2, u2f ,2〉) dr. (2.26)

2.4.2. L2 norm for the flow response
For the response, one possible norm is the energy norm based on the scalar product

〈u′(To), v
′(To)〉2

=
1
2

1
2π

∫ Zopt

0

∫ 2π

0

∫ Rm

0
r〈u′(r, θ, z, To), v

′(r, θ, z, To)〉 dr dθ dz

=

∫ Zopt

0

∫ Rm

0
r(〈Re(u2),Re(v2)〉 + 〈Im(u2), Im(v2)〉) dr dz, (2.27)

=
1
2

∫ Zopt

0

∫ Rm

0
r(〈u2(r, z, To), v2(r, z, To)〉 + 〈u2(r, z, To), v2(r, z, To)〉) dr dz. (2.28)

As we are interested in the evolution of perturbations close to the inlet, this scalar
product is calculated on a reduced domain (r, z)∈ [0; Rm] × [0; Zopt]. Unless specified
otherwise, a value of Zopt = 5 is chosen in the following. The effect of this value is
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r
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z
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FIGURE 7. Vorticity cut of the Re = 2000, St = 0.50 base unpaired flow, with vortex
domains represented for the first three vortices. For the second vortex, four δz sizes are
sketched (0.4, 0.6, 0.8, 1.0), whereas for the first and third ones, only the δz= 0.8 box is
represented.

investigated in § 3.4.1. Once again, this scalar product is different from the standard
scalar product for complex numbers. However, the corresponding L2 norm for the
response remains the same,

‖u′(To)‖
2
2 =

∫ Zopt

0

∫ Rm

0
r〈u2(r, z, To), u2(r, z, To)〉 dr dz. (2.29)

Note that, for the response, both L2 scalar product and norm are not integrated over a
full forcing period since this would require to store every time-step of every response
field: storage is only done once in every forcing period Tf . A zero time-shift with
respect to the axisymmetric forcing is chosen: To is taken as 2nTf , with n ∈ N. The
influence of this shift is investigated in § 3.4.4, and the influence of n is discussed
in § 3.4.5.

2.4.3. Displacement norm for response
The bifurcation scenario (Lee & Reynolds 1985; Parekh et al. 1988) relies on a

slight tilt and shift of the vortices near the jet inlet. Therefore, in this section, we
define an alternative norm that quantifies the displacement of vortices from their
unperturbed position. The location of a given vortex i at To in a (r, z)-plane, cut at
an angle θc, can be defined as the centroid of its vorticity ωθ along θ

xi(θc, To)=

∫∫
r,z∈Ωi

rωθ(r, θc, z, To)x dr dz∫∫
r,z∈Ωi

rωθ(r, θc, z, To) dr dz
, (2.30)

with Ωi the domain of the ith vortex. This domain is defined as the rectangle (z, r)∈
[Zi − δz/2; Zi + δz/2] × [0; 1], with Zi the axial component of the centroid of the ith
vortex and δz conveniently fixed at 0.8. Examples of such boxes are represented in
figure 7. The effect of δz on the optimisation is investigated in § 3.4.2.
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Optimal triggering of jet bifurcation 885 A34-15

The vorticity field ωθ can be written as the sum of the vorticity Ωθ induced by
the base flow U(r, z, t) and an infinitesimal perturbation ω′θ induced by the m = 1
perturbation u′:

Ωθ(r, z, t) =
∂Ur

∂z
−
∂Uz

∂r
, (2.31)

ω′θ(r, θ, z, t) =
∂u′r
∂z
−
∂u′z
∂r

=

(
∂u2,r

∂z
−
∂u2,z

∂r

)
eiθ
+ c.c.=ω2,θ(r, z, t)eiθ

+ c.c. (2.32)

Specifying a perturbation amplitude ε� 1, we obtain

ωθ(r, θ, z, t) = Ωθ(r, z, t)+ εω′θ(r, θ, z, t), (2.33)
= Ωθ(r, z, t)+ εω2,θ(r, z, t)eiθ

+ εω2,θ(r, z, t)e−iθ . (2.34)

The displacement norm with respect to the ith vortex Ωi can then be defined as

‖u′(To)‖
2
disp,Ωi

=
1
2

1
2π

∫ 2π

0

∥∥∥∥ dxi(θc, To)

dε

∣∣∣∣
ε=0

∥∥∥∥2

2

dθc. (2.35)

For each vortex considered, it is possible to define a corresponding displacement
norm. In the present study, following the bifurcation scenario (Parekh et al. 1988), the
displacement norm for the first three vortices is considered. Then, the axial position
of the third vortex, depending on the Strouhal number, approximately corresponds to
5 jet diameters, which is consistent with the optimisation domain chosen for the L2
norm (2.27). Full details on this norm are given in appendix A.

Note that the displacement norm is not strictly a norm but a semi-norm:
‖u′(To)‖disp,Ωi = 0 does not necessarily imply that u′(To) = 0. As can be seen
in appendix A and in figure 8, the displacement norm being equal to zero only
implies that the vorticity centroid of the base flow and of the perturbation are at the
same location. Therefore, the alternating pattern of figure 8(b) is a good candidate
for a large displacement norm at fixed L2 norm. In this figure, one can easily
understand that a large L2 norm does not necessarily imply a large displacement
norm. Conversely, because the L2 norm is a true norm, a large displacement norm
must imply a large L2 norm.

Eventually, because of the definition of this norm that focuses on a given vortex i,
one displacement norm can be defined for each vortex ring. In our study, we assume
the linear behaviour to be only valid in the vicinity of the inlet, where perturbations
remain small; therefore, we only consider the displacement norm for each of the first
three vortex rings.

2.5. Construction of a basis for the forcing
As explained in § 2.3.2, our purpose is to find the optimal forcing as the optimal
linear combination of one-dimensional forcing functions. Both for convenience and for
numerical accuracy, it is preferable to have a basis that is orthonormal with respect
to the scalar product used for forcing (see § 2.4.1). This naturally suggests the use
of Bessel functions, as the problem is formulated in cylindrical coordinates. As our
problem is non-singular in r= 0, we choose Bessel functions of the first kind, Jk.
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1.0

0.5r

0 0.5
z

1.0 1.5 2.0 0 0.5
z

1.0 1.5 2.0

-1.0 -0.5 0 0.5 1.0

(a) (b)

FIGURE 8. Schematic of base vortices (contour lines) superposed with a vorticity
perturbation (colour field). The points represent the centroid of the superposition of the
base flow and a finite-amplitude perturbation. (a) The perturbation does not change the
centroid location, hence the displacement norm for this perturbation is zero. However, the
perturbation is not identically zero, and neither is its L2 norm. (b) The perturbation moves
the centroid, and thus both norms are non-zero in this case.

1.0

J0(r)
J1(r)
J2(r)0.5

0

-0.5

-1.0 0 2 4 6

J n
(r

)

r
8 10

FIGURE 9. Bessel functions of the first kind J0, J1 and J2.

The Bessel functions J0, J1 and J2, plotted in figure 9, verify the properties
(Abramowitz & Stegun 1964)

J0(0)− 1= J1(0)= J2(0)= J′0(0)= J′2(0)= 0. (2.36)

Moreover, by denoting λi,n the nth root of Ji, these functions verify the orthogonality
property ∫ 1

0
rJi(rλi,n) Ji(rλi,m) dr=

δmn

2
[Ji+1(λi,n)]

2. (2.37)

We want to create a forcing basis that meets two criteria: first, it must be orthogonal,
and second, all basis functions must verify the boundary conditions at r = 0 (2.17)
and (2.18).
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Optimal triggering of jet bifurcation 885 A34-17

j (u2f ,1,r, u2f ,1,θ , u2f ,1,z, u2f ,2,r, u2f ,2,θ , u2f ,2,z)

1 6 j 6 N J0(rλ0,j)(1,−1, 0, 0, 0, 0)1[0;1]/|J1(λ0,j)|

N < j 6 2N J2(rλ2,j−N)(1, 1, 0, 0, 0, 0)1[0;1]/|J3(λ2,j−N)|

2N < j 6 3N J1(rλ1,j−2N/2)(0, 0, 1, 0, 0, 0)1[0;2]/(
√

2|J2(λ1,j−2N)|)

3N < j 6 4N J0(rλ0,j−3N)(0, 0, 0, 1,−1, 0)1[0;1]/|J1(λ0,j−3N)|

4N < j 6 5N J2(rλ2,j−4N)(0, 0, 0, 1, 1, 0)1[0;1]/|J3(λ2,j−4N)|

5N < j 6 6N J1(rλ1,j−5N/2)(0, 0, 0, 0, 0, 1)1[0;2]/(
√

2|J2(λ1,j−5N)|)

TABLE 1. Description of the orthonormal basis of forcing functions used in the
optimisation. The indicator function 1I , where I is an interval, is 1 on I and 0 elsewhere.

We consider the N first Bessel functions J0(rλ0,m), J1(rλ1,m) and J2(rλ2,m), 16m6N,
with which we can build a set of 6N combined basis functions. These orthonormal
basis functions are defined in table 1. For both radial and azimuthal forcing, a radial
support over 0 6 r 6 1 is chosen, as their optimisation displayed in figure 13 reveals
a quick decay after r= 0.5 of these components; for the axial component, a support
0 6 r 6 2 is chosen, because its decay is slower.

Any forcing function (u2f ,1,u2f ,2) can be projected onto this basis. Indeed, according
to (2.17), u2f ,1,r − u2f ,1,θ and u2f ,2,r − u2f ,2,θ are functions with a zero derivative on
the axis, and, by assuming that they have a compact support [0; 1], they can be
decomposed into a J0(rλ0,j)1[0;1] series, where the indicator function 1[0;1] is 1 on
[0; 1] and 0 elsewhere.

Moreover, according to (2.17), (2.18), u2f ,1,r+ u2f ,1,θ and u2f ,2,r+ u2f ,2,θ are functions
with zero value and zero derivative on the axis. By assuming again that they have a
compact support [0; 1], these can be decomposed into a J2(rλ2,j)1[0;1] series.

Finally, according to (2.17), u2f ,1,z and u2f ,2,z have a zero value at r=0. By assuming
a compact support [0; 2], they can be decomposed into a J1(rλ1,j)1[0;2] series. Further
details of the optimisation procedure are given in appendix B.

3. Results of the optimisation
Throughout this section, except in § 3.4.5, the optimization time To used is chosen

large enough such that the gain, forcing and response have reached their asymptotic
values (To→∞).

3.1. Baseline case, St= 0.5
In this subsection, the optimal L2 norm long-term forcing and response for the case
Re = 2000 and St = 0.5 are discussed. This particular set of parameters leads to
particularly strong vortex spreading in bifurcating jets, according to previous studies
(Parekh et al. 1988; Tyliszczak & Geurts 2014; Gohil et al. 2015; Gohil & Saha
2019).

It is shown in appendix B.1 that the forcing functions u1f ,1(r) and u1f ,2(r) can be
chosen real without loss of generality: prescribing complex values is equivalent to an
azimuthal shift of the bifurcation plane. In this case, the forcing can be rewritten as

u2(r, z= 0, t) = u2f ,1(r) cos(ωf t/2)+ u2f ,2(r) sin(ωf t/2), (3.1)
= |u2f (r)| cos(ωf t/2+ arg[u2f (r)]), (3.2)

where the cosine function is evaluated component-wise.
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(b)

FIGURE 10. The L2 norm optimal forcing modulus and phase for Re=2000 and St=0.50.
The phase was unwrapped to remain continuous in r. Here |u2f (r)| and arg(u2f (r)) are
defined in (3.2).

The functions |u2f (r)| and arg[u2f (r)] are displayed in figure 10. All three forcing
components peak in the jet mixing layer, the most receptive region of jets (Ho &
Huerre 1984). The dominant forcing component is radial. This shows that it is more
effective to force in the radial, rather than in the axial or azimuthal direction, although
axial forcing has been considered in most previous studies of jet bifurcation (Hilgers
& Boersma 2001; Reynolds et al. 2003; Tyliszczak & Geurts 2014). Concerning the
phase, a phase shift in all three components is observed across the mixing layer. This
phase shift is approximately equal to π for u2f ,θ , 2π for u2f ,r and π− 3π/2 for u2f ,z.
This induces additional shear in the mixing layer, strengthening or weakening locally
the vortex to be formed. Oscillations of small amplitude and small wavelength near
the boundaries result from the truncated basis of Bessel functions.

The optimal response, represented in figure 11, displays alternating positive and
negative patches of vorticity. In the mixing layer, where the vortices are not yet
formed, the positive and negative patches fit closely the mixing layer sides. When
vortices have rolled up, the patches spread on either side of the formed vortex rings
in an alternating fashion. The intensity of the patches grows exponentially with the
axial distance z. The contours of base flow vorticity show that the effect of these
patches is to shift the vortex positions as expected. In an (r, z) cut, two consecutive
vortices are therefore sent in opposite directions. For a given vortex ring, two opposed
points (separated by an azimuthal phase difference π), are sent in opposite r and
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2

1

0 1 3 4 52

r

z

-3300 -50 -1 1 50 3300

FIGURE 11. The L2 norm optimal vorticity response ω′2,θ,opt snapshot Re = 2000 and
St = 0.50 at a zero phase. A level 4 contour of base flow vorticity has been added to
understand the response pattern. A truncated and sign-sensitive logarithmic scale has been
used.

FIGURE 12. Snapshot of the superposition of the base flow and of the L2-norm optimal
response with a finite amplitude at Re= 2000 and St= 0.5.

z directions, because of the helical shape of the perturbation. As a consequence, in
three dimensions, consecutive vortex rings are globally shifted off the axis in opposite
directions.

This is demonstrated in figure 12, where the axisymmetric unpaired base flow
and the linear optimal m= 1 response are superposed. The vortices are alternatingly
deflected towards the top and the bottom.

The optimal and the first suboptimal gain values are calculated. The first suboptimal
forcing mode, with its associated gain and response, are defined as the maximum-gain
forcing in the subspace that is orthogonal to the optimal forcing. Although the gain
value in itself does not have a clear meaning, because we compare a two-dimensional
response with a one-dimensional forcing, the large optimal value 1.01× 103 indicates
a strong receptivity of the flow to this kind of forcing. The strong gain separation,
the optimal gain being 102 times larger than the first suboptimal at St= 0.5, indicates
that only the leading forcing mode is relevant in this study; suboptimal forcing can
only contribute marginally to the linear results.
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FIGURE 13. Evolution of the L2 norm optimal forcing modulus and phase for four
different Strouhal numbers. Here |u2f (r)| and arg(u2f (r)) are defined in (3.2).

3.2. Effect of the Strouhal number
In this section, we investigate the effect of the Strouhal number on optimisation results,
obtained with respect to the L2 norm.

Figure 13 represents the optimal forcing shapes (modulus and phase of each
component) for four different Strouhal numbers 0.35, 0.5, 0.65 and 0.8. A striking
result is that the modulus shape is largely invariant with respect to the Strouhal
number; however, the phase distributions vary greatly. In fact, this latter change can
be understood as an overall shift of the phase functions: for each Strouhal number,
the phase variations remain very similar, up to a constant shift.

In order to understand this shift quantitatively, we compare the values of two
kinds of scalar products between optimal forcings. On the one hand, we compute
the standard scalar product (2.25) for all Strouhal numbers; results are displayed in
table 2(a). On the other hand, we calculate, for the four Strouhal numbers considered
in figure 13, the scalar products between their forcing modulus, as displayed in
table 2(b). This latter scalar product only accounts for differences in the modulus
shape of the forcing, but not in the phase. By comparing these two results, it can be
easily found that most of the changes with St are due to the phase difference, and
not the shape difference. This is encouraging for practical applications of this method:
if this optimal forcing shape were implemented in a physical device, it could work
efficiently at different Strouhal numbers, by only varying the phase shift between
forcing components.

Optimal response shapes remain very similar at all Strouhal numbers to those
represented in figure 11. However, it is difficult to derive precise quantitative
comparisons of the responses, because these are located around base flow vortices, of
which the position varies with Strouhal number.
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FIGURE 14. Evolution of the long-term (To −→∞) optimal and first suboptimal gains
for the L2 norm optimisation as a function of Strouhal number.

St 0.35 0.50 0.65 0.80 St 0.35 0.50 0.65 0.80

0.35 1.000 0.763 0.424 0.209 0.35 1.000 0.980 0.929 0.888
0.50 0.763 1.000 0.884 0.728 0.50 0.980 1.000 0.978 0.946
0.65 0.424 0.884 1.000 0.955 0.65 0.929 0.978 1.000 0.989
0.80 0.209 0.728 0.955 1.000 0.80 0.888 0.946 0.989 1.000

(a) The L2 norm optimal forcings. (b) The L2 norm optimal forcings modulus.

TABLE 2. Comparison of L2 norm optimal forcings and their modulus for different
Strouhal numbers.

The evolution of the optimal and first suboptimal gains as a function of the Strouhal
number is represented in figure 14. Concerning the optimal gain, we observe large
variations across Strouhal numbers, with an exponential growth as a function of St up
to 0.75, where it seems to reach a saturation point. While previous studies (Danaila
& Boersma 1998, 2000; da Silva & Métais 2002; Reynolds et al. 2003; Tyliszczak
& Boguslawski 2006, 2007; Gohil et al. 2010; Gohil & Saha 2019) usually report
bifurcation in the range 0.4 6 St 6 0.6, we find that the optimal gain continues to
grow for Strouhal numbers greater than 0.6. This discrepancy between optimal and
ad hoc forcing will be further investigated in the nonlinear regime (§ 4.3).

The suboptimal gain does not vary as much as the optimal, remaining of the order
of 10 at all Strouhal numbers. Therefore, the gain separation largely increases with
Strouhal number. Its consequences are further discussed in § 3.3.

3.3. Influence of the choice of norm
Two distinct response norms are used in this study: the L2 norm, defined in § 2.4.2,
and the displacement norm, defined in § 2.4.3. Only results for the L2 norm have been
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FIGURE 15. For every Strouhal number studied, scalar product between the optimal L2
forcing and the optimal displacement norm forcings, for any of the first three vortices
considered.

Optimisation norm L2 Ω1 displacement Ω2 displacement Ω3 displacement

L2 1.0 0.9846 0.9988 0.9999
Ω1 displacement 0.9846 1.0 0.9885 0.9838
Ω2 displacement 0.9988 0.9885 1.0 0.9989
Ω3 displacement 0.9999 0.9838 0.9989 1.0

TABLE 3. Scalar product between the optimal unit-norm forcings for the different norms
considered. Here To = 18, Re= 2000 and St= 0.5.

discussed so far. In this section, we investigate the influence of the norm by comparing
optimisation results based on the L2 norm and the displacement norm of any of the
first three vortex rings.

For St=0.5, table 3 compares the forcing shapes in this case for the different norms
used. The main conclusion is that, in this case, irrespective of the vortex choice for the
displacement norm, the results are almost independent of the response norm used, with
a minimal scalar product of 0.9838 between two different unit-norm forcing structures.

For all Strouhal numbers, figure 15 compares the optimal L2 forcing with optimal
displacement norm forcing based on any of the first three vortices. Again, the
results show an almost complete independence of the optimal forcing with respect
to the chosen norm, with a minimal scalar product of 0.9802 between two different
unit-norm forcings (for St = 0.4). However, we see that the L2 norm results are
closer to the results of the third vortex displacement; this can be understood with the
exponential spatial growth of the optimal linear response (see § 3.1) that obviously
puts a larger emphasis on the situation at the end of the optimisation domain, where
the third vortex is approximately located.

The independence of the forcing norm can be explained by two main reasons.
First, comparing figures 8 and 11, one sees that the optimal L2 response shape,
with its alternate pattern, is well-suited to shift the vortices off-axis, and therefore is
well-suited for the displacement norm. Second, the large separation gains that exist
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between the optimal forcing and its suboptimals reinforces this phenomenon. Indeed,
considering the L2 norm, figure 14 shows that the optimal gain is 3.9 times larger
than the first suboptimal at St = 0.35, and 513 times larger at St = 0.75. Therefore,
although the two norms considered do not measure the exact same quantities, the
large gain separation balances this potential discrepancy. If the optimal L2 forcing has
a much larger gain than any other orthogonal forcing, even though its corresponding
unit-norm response shape might not shift the vortices optimally, this is compensated
by its large gain.

3.4. Effect of simulation parameters
3.4.1. Length of the optimisation box for the energy norm

For the L2 norm, the optimisation is carried out by calculating the response norm
on the domain 06 r6Rm and 06 z6Zopt, with Zopt= 5. However, changing Zopt could
change the results. In this section, we investigate the effect of changing Zopt, in the
(Re= 2000, St= 0.5) regime, by considering values of Zopt from 3 to 7.5 separated by
0.5 increments. When all the optimal forcings are calculated, scalar products between
each couple of them are subsequently computed, and the most distant optimal forcings
are those for Zopt = 3 and Zopt = 7.5, with a scalar product of 0.99961. The optimal
forcing is thus independent of the domain length considered.

3.4.2. Length of the boxes around vortices for displacement norm
For the displacement norm, the optimal forcing is calculated by integrating

perturbation quantities around the ith vortex core (i = 1, 2 or 3). To perform this
integration, a rectangular box [Zi − δz/2; Zi + δz/2] × [0; 1], with Zi the axial position
of the vortex (calculated as a centroid) and δz fixed to 0.8, is first chosen. However,
the choice of δz could affect the results of the optimisation.

This effect is now studied for the Re= 2000 and St= 0.5 case. Four different values
of δz are tested: 0.4, 0.6, 0.8 and 1, as represented in figure 7. Above δz = 1, boxes
for consecutive vortices would overlap. The first three vortices are considered here.

The results show that the optimal forcing barely depends on the box size: by
considering scalar products between optimal forcing structures on the same vortex for
different δz, all scalar products are above 0.992.

3.4.3. Effect of the dimension of the forcing space
The convergence of the optimal forcing shape with respect to the number N of basis

functions is now evaluated. As these functions are orthonormal, the optimal forcing for
a basis of dimension N ′<N can easily be computed by taking the first N ′ components
of the optimal N-forcing. Therefore, the evolution of energy component of the optimal
forcing over each basis function, as represented in figure 16, shows the convergence
of the algorithm as a function of N, for Re= 2000 and St= 0.5.

It can be stated that the quickest mode to converge are the k= 0, 1, 3 and 4 modes,
corresponding to forcing in the radial and azimuthal directions. However, in all cases,
convergence is properly achieved, with energy levels contained in the last modes about
10 000 times lower than the ones in the first modes.

3.4.4. Effect of the time-shift with respect to the axisymmetric forcing
Our optimisation over a periodic flow is based on cost function evaluations only

once per subharmonic cycle, To = 2nTf . However, a large gain at these synchronized
To does not necessarily imply large gain for different To = (2n + ϕ)Tf phase-shifted
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FIGURE 16. Energy component of the optimal forcing on each of the different basis
forcing functions considered, for Re= 2000 and St= 0.50. In this case, N = 50.

Phase shift 0 π/2 π 3π/2

0 1.0 0.9896 0.9936 0.9941
π/2 0.9896 1.0 0.9831 0.9826
π 0.9936 0.9831 1.0 0.9923
3π/2 0.9941 0.9826 0.9923 1.0

TABLE 4. Scalar product of the L2 norm optimal forcings for different phase shifts. Here
To = (2n+ ϕ)T with 2n= 18 for phase 0 and 6 for others, with Re= 2000 and St= 0.50.

of 2πϕ with the fundamental forcing; in other words, there is no guarantee that a
forcing that shifts well the vortices at a given objective time will not perform poorly
at another time.

As a test, we evaluate the influence of a few optimisation time-shifts: ϕ = 0
(phase 0), 1/4 (phase π/2), 1/2 (phase π) and 3/4 (phase 3π/2). The different
optimal L2-norm forcing functions found with these shifts are compared in table 4.
Again, the optimal forcing is almost independent of the phase shift. This can be
understood using the same arguments of the large gain separation as in § 3.3, but also
physically by considering the jet bifurcation as a very receptive physical mechanism:
in the interpretation of Parekh et al. (1988), the vortices are shed out of the axis, and
they do not oscillate around a fixed equilibrium. Therefore, there is no chance that at
a particular time-shift, the forcing has no effect on the vortices. If, at some time-step
in the forcing period, the vortices are offset, then this offset continues through the
entire cycle.

3.4.5. Final objective time To

The optimal forcing and response can be calculated for different objective times To.
The shape of forcing functions and the associated gain evolves with time. At some
point, the optimal forcing does not change and the gain reaches a plateau. In this
study, the convergence condition we set for the final state is a variation of the gain
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FIGURE 17. Evolution of optimal forcing, response and gain as a function of optimisation
time To for the Re= 2000, St= 0.50 case. All quantities are optimised with respect to the
L2 norm. (a) Evolution of the optimal gain. Black circles denote values obtained for the
standard cases without phase shift between harmonic and subharmonic forcing, red crosses
represent the gain obtained with the phase shifts discussed in § 3.4.4. (b) Evolution of the
optimal forcing and response, with scalar product comparisons with To = 2 and 18. The
scalar products are all carried out over quantities normalized with respect to the relevant
L2 norm.

by less than 0.5 % compared with the gain achieved two forcing periods before. In this
section, we discuss the evolution of these quantities for the L2 norm and the St= 0.50
case.

Figure 17(a) shows that, after an initial phase of exponential growth, the gain
reaches a plateau. This confirms the stability of the axisymmetric unpaired base flow
with respect to m= 1 perturbations.

Figure 17(b) displays the shape evolution with To of the optimal forcing and
response by comparing each of these with the optimal quantities for To = 2 and 18.
Regarding forcing structures, little change occurs between To = 2 and 18; the initial
forcing is almost optimal, its shape is fixed. Therefore, if one is only interested in
optimal forcing, there is no need to run the optimisation for long To. Concerning
response structures, because of the spatial development of the perturbation field (more
than two forcing periods are necessary to fill the five-diameter-long optimisation
domain, because the initial perturbation is zero), the initial shape of the response, at
To = 2, has little resemblance with its final shape. After six forcing periods, they are
almost identical.

The gain values obtained with different time shifts over six flow periods, as
discussed in § 3.4.4, are shown as red crosses in figure 17(a). These values also give
a measure of the moderate gain variations, within 12 % of their mean, that can be
expected for time horizons in between integer multiples of the forcing period.

3.5. Comparison with non-optimal ad hoc forcing
Previous studies (Danaila & Boersma 1998, 2000) prescribe an ad hoc helical forcing
of the form

u(r, θ, z= 0, t)=U0(r)
(

1+ A cos(ωf t)+C cos(ωf t/2+ φ) cos(θ)
(

2r
D

))
ez, (3.3)
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St 0.35 0.50 0.65 0.80
|〈u2f ,opt, u2f ,ad-hoc〉| 0.006 0.143 0.198 0.214

TABLE 5. Scalar product between normalised ad hoc forcing from (3.3) and optimal
forcing with respect to the L2 norm for four Strouhal number values.

with φ the phase shift and 2r/D a factor imposed to enforce the compatibility
condition (2.17) at r = 0. In Parekh et al. (1988) and Danaila & Boersma (1998,
2000), the phase shift φ is fixed at 0 to enforce simultaneous peaks (in time) of the
axisymmetric and helical forcings.

The ad hoc forcing (3.3) is now compared with the optimal one. This comparison
is made by calculating the scalar product between the two for four Strouhal number
values 0.35, 0.5, 0.65 and 0.8. Results are summarized in table 5. Owing to the large
gain separation shown in figure 14, these projection values approximately correspond
to the ratio of the gains respectively achieved with ad hoc and optimal forcing, and
it is seen that the increase of efficiency with the optimal forcing is significant.

4. Three-dimensional nonlinear results
In this section, the optimal forcing is implemented in three-dimensional nonlinear

DNS. The purpose is to assess the performance of the optimised forcing across a large
Strouhal number band, in comparison with an ad hoc forcing shape (3.3) that has been
used in previous bifurcating jet studies.

4.1. Prescribed inflow forcing
In order to compare the effects of optimal versus ad hoc forcing in a meaningful
way, a consistent normalisation of the input energy must be established. To this
end, we calibrate the energy of helical forcing input with respect to the axisymmetric
forcing (2.6). The latter is characterised by the fluctuation amplitude A, and its energy
is measured as

‖U‖2
f =

1
2Tf

1
2π

∫ 2Tf

0

∫ 2π

0

∫ Rm

0
r〈U(r, θ, z= 0, t),U(r, θ, z= 0, t)〉 dr dθ dt, (4.1)

=

(∫ Rm

0
r〈U0(r)ez,U0(r)ez〉 dr

)(
1

2Tf

∫ 2Tf

0
(1+ A cos(ωf t))2dt

)
, (4.2)

= ‖U0ez‖
2
f

(
1+

A2

2

)
, (4.3)

with Rm the outer radial boundary at the inlet in our simulations. Therefore, the
energy of the base flow forcing is split between the mean component ‖U0ez‖

2
f and

the axisymmetric forcing A2
‖U0ez‖

2
f /2.

4.1.1. Amplitude and phase of the optimal forcing
Adding the optimal helical forcing, with an amplitude of BΓ , the jet inlet velocity

(2.3) is prescribed as

u(r, θ, z= 0, t) = U0(r)(1+ A cos(ωf t))ez

+ 2BΓ
[
Re(u1f ,1) cos(θ) cos(ωf t/2)− Im(u1f ,1) sin(θ) cos(ωf t/2)

+ Re(u1f ,2) cos(θ) sin(ωf t/2)− Im(u1f ,2) sin(θ) sin(ωf t/2)
]
. (4.4)

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 O

N
ER

A 
Pa

la
is

ea
u,

 o
n 

11
 Ja

n 
20

20
 a

t 0
7:

15
:2

8,
 s

ub
je

ct
 to

 th
e 

Ca
m

br
id

ge
 C

or
e 

te
rm

s 
of

 u
se

, a
va

ila
bl

e 
at

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e/
te

rm
s.

 h
tt

ps
://

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
9.

98
3

https://www.cambridge.org/core
https://www.cambridge.org/core/terms
https://doi.org/10.1017/jfm.2019.983


Optimal triggering of jet bifurcation 885 A34-27

A normalisation factor Γ is introduced, with a numerical value determined as 0.239
for the present flow case, such that the energy ratio between axisymmetric and helical
forcing is given by A2/B2.

Without loss of generality, the azimuthal phase of the bifurcation plane is set to
θ = 0 by imposing all coefficients u2f ,·,· to be real-valued functions of r. This is
possible because the perturbation equations for u2 only involve real coefficients (see
appendix B). Therefore, the total inflow forcing is finally recovered as

u(r, θ, 0, t) = (1+ A cos(ωf t))U0ez

+ 2BΓ

(u2f ,1,r cos(ωf t/2)+ u2f ,2,r sin(ωf t/2)) cos(θ)
(u2f ,1,θ cos(ωf t/2)+ u2f ,2,θ sin(ωf t/2)) sin(θ)
(u2f ,1,z cos(ωf t/2)+ u2f ,2,z sin(ωf t/2)) cos(θ)

 . (4.5)

In this study, the amplitude B is fixed at 0.01, five times lower than the amplitude of
the axisymmetric forcing prescribed; if this helical forcing had a constant shape in the
radial direction harmonically modulated with time (as the axisymmetric), this would
have corresponded to a maximum velocity amplitude with respect to the infinity norm
of 1 % of the mean flow. This amplitude is much lower than what has been used in
the literature: 5 % of the mean flow in Gohil et al. (2015), 1 % to 15 % in Tyliszczak
& Geurts (2014) or 15 % in Danaila & Boersma (1998, 2000).

4.1.2. Amplitude of the ad hoc forcing
The simple, non-optimal helical forcing (3.3) is accordingly cast in normalised form

as

u(r, θ, z= 0, t)=U0(r)
(

1+ A cos(ωf t)+ B′Γ ′ cos(ωf t/2) cos(θ)
(

2r
D

))
ez, (4.6)

with a fixed zero-phase shift. A value Γ ′ = 1.850 gives an energy ratio A2/B′2
between axisymmetric and helical components, which is consistent with the above
parametrisation of the optimal forcing. To enable fair comparisons, B′ is fixed at 0.01,
the same as B in the previous section, and much lower than forcing levels commonly
used in the literature.

4.2. Computational set-up
Nonlinear DNS are again carried out using Nek5000. In order to accommodate the
spreading associated with bifurcation, a conical mesh is used, as represented in
figure 18(a). The domain is 15 diameters long and its circular cross-section grows
linearly from 5 jet diameters at the inlet plane (z = 0) to 16 diameters at the outlet
plane (z = 15). The mesh contains 27 720 spectral elements, each containing 8◦ of
freedom in each direction; there are 30 elements in the axial direction and each (x, y)
plane contains 924 elements, as represented in the mesh cut in figure 18(b).

The jet velocity is prescribed in the inlet plane according to either (4.5) or (4.6).
An outflow condition (2.8) is applied at all other boundaries. In addition, the radial
boundary downstream of z= 5 is padded with absorbing layers of thickness 1. This is
necessary in order to ensure numerical stability in some cases of particularly strong jet
spreading. As a consequence, the entire flow region z> 10 is regarded as unphysical
and is excluded from the following presentation of results.

A constant time step of 1t = 2.5 × 10−3 is used throughout. The simulations
are run for at least 100 dimensionless time units, in order to evacuate transient
dynamics. Average quantities are then calculated over the last 10 forcing periods of
the simulation.
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FIGURE 18. Mesh used for three-dimensional nonlinear computation.

4.3. Simulated jet bifurcation at various Strouhal numbers
Simulations are performed at Re = 2000, with Strouhal numbers ranging from 0.35
to 0.8, in increments of 0.05, with the optimal forcing (4.5). For comparison, the
nonlinear response to ad hoc helical forcing (4.6) is computed for Strouhal numbers
between 0.4 and 0.8, in increments of 0.1.

A vorticity snapshot of the optimally forced jet at Re= 2000 and St= 0.5 is shown
in figure 19(a). Close to the nozzle, axisymmetric vortex rings are seen to form
rapidly, while the helical perturbation becomes appreciable about two jet diameters
downstream of the inlet. The vortex rings are tilted and shifted off-axis, quickly
resulting in bifurcation. In this process, the vortex rings are distorted on their inner
side.

Comparing the nonlinear flow responses between optimised and ad hoc forcing in
figures 19(a) and 19(b), we observe, without any ambiguity, that the optimal forcing
leads to a much stronger and earlier bifurcation. In contrast to the optimised case,
where the flow pattern is clearly symmetric with respect to the central plane, the effect
of the simple forcing is too weak to enforce this symmetry.

The resulting time-averaged axial velocity is shown in figure 20. The symmetric
bifurcation is clearly marked in the (x, z) plane, whereas the mean flow has entirely
left the (y, z) plane at a streamwise distance of about six diameters. All these results
validate our optimisation procedure.

Corresponding plots of the mean axial velocity in the bifurcation plane are shown
in figure 21 for all Strouhal numbers. The response to optimal forcing is represented
in the left and centre columns, alongside the response to ad hoc forcing in the right
column. In addition, vorticity snapshots of the optimally forced jet for three different
Strouhal numbers are displayed in figure 22.

In the optimally forced cases, a pronounced bifurcation is observed at all Strouhal
numbers, despite the low helical forcing amplitude. Below St = 0.55, the cleavage
between the two branches widens with the Strouhal number, which is fully consistent
with the increase of the linear gain shown in figure 14. Below this threshold, vortices
do not distort one another, as shown in figure 22(a): such an interaction only starts
around St= 0.55 (see figure 19a). Above this value, while the jet continues to display
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Optimal forcing Ad-hoc forcing

(a) (b)

FIGURE 19. Three-dimensional vorticity magnitude snapshots of the nonlinearly forced
bifurcating jet for Re = 2000 and St = 0.5. (a) The jet is forced optimally, (b) simple
ad hoc forcing is applied.

-4 -2 0 2 4 -4 -2 0 2 4

10
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6

4

2

0

x

z

y

(a) (b)

0 0.25 0.50 0.75 1.00

FIGURE 20. Mean axial velocity cut in the bifurcating (y= 0, a) and bisecting (x= 0, b)
planes for the Re= 2000, St= 0.5 case optimally forced with a 1 % amplitude. The sponge
layers are not displayed.

strong flaring, a third central structure emerges progressively, and the mean flow is
increasingly mixed in between the paths of the outer jets. Depending on the Strouhal
number, this central structure resembles either a large central jet (St= 0.75 and 0.8),
as shown in the mean flow cuts and in figure 22(c), or it resembles two smaller side
jets (St= 0.6, 0.65 and 0.7), as shown in the mean flow cuts and in figure 22(b). The
occurrence of this central mixing seems to be linked to an observation by Parekh et al.
(1988): at high Strouhal number, associated with small spatial separation, the vortex
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(k) (l)(j)

(m) (n) (o)

St = 0.75 St = 0.80 St = 0.80

St = 0.65 St = 0.70 St = 0.70

St = 0.55 St = 0.60 St = 0.60

St = 0.45 St = 0.50 St = 0.50

St = 0.35 St = 0.40 St = 0.40

FIGURE 21. Mean axial velocity cuts in the bifurcating plane for various values of the
Strouhal number in the range [0.35; 0.8] and for both optimal ((a,d,g,j,m) and (b,e,h,k,n))
and ad hoc (c, f,i,l,o) forcing. The forcing amplitude is fixed for B and B′ at 1 % and the
colour bar can be found in figure 20. The sponge layers are not displayed.

rings interact and distort one another more intensely. This purely nonlinear effect,
confirmed in figure 22, also leads to a stronger transition to turbulence in our
simulations. Even though it is not captured by the analysis in § 2, it provides a
reasonable explanation for the blurring of the mean flow in the central region.
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St = 0.35 St = 0.65 St = 0.80

(a) (b) (c)

FIGURE 22. Three-dimensional vorticity magnitude snapshots of the nonlinearly optimally
forced bifurcating jet for Re = 2000 and three different Strouhal values: 0.35, 0.65
and 0.80.

However, the simulations clearly demonstrate that the continued exponential growth
of the linear gain beyond St= 0.55 is not reflected in the nonlinear flow behaviour.

The simple ad hoc helical forcing, as seen in the right column of figure 21, clearly
is much less efficient in producing a bifurcation. The flaring, when it occurs, sets
in further downstream, typically with less pronounced branch formation, and the
loss of symmetry in the 10-period mean indicates a much reduced efficiency to
alternatively deviate the jet. Second, a clear bifurcation within 10 diameters of the
inlet is only observed in the narrow range 0.4 6 St 6 0.5. Owing to the low helical
forcing amplitude of 1 % in our simulations, this band of St is consistent with the
literature (Reynolds et al. 2003; Tyliszczak & Geurts 2014). Conversely, optimised
forcing results in bifurcation over the entire range of Strouhal numbers considered in
this study.

Vortex pairing, as a subharmonic Floquet instability, is absent in all bifurcation
simulations, even though the base flows in these calculations are Floquet-unstable over
the Strouhal number range between 0.5 and 0.8 (see Shaabani-Ardali et al. 2019). The
helical forcing is seen to be efficient at suppressing the vortex pairing instability.

5. Conclusion
Optimal forcing of jet bifurcation, as an example of forced symmetry breaking of

a time-periodic base flow, has been investigated in a linear framework. Results have
been validated in three-dimensional DNS calculations.

This study relies on the bifurcation scenario originally described by Lee & Reynolds
(1985) and Parekh et al. (1988). Following their physical description, we have
proposed to optimise the bifurcating jet by maximising a linear helical perturbation
of an array of axisymmetric ring vortices in a jet. To suppress the pairing instability,
the axisymmetric unpaired base flow has been computed through a time-delayed
feedback technique (Shaabani-Ardali et al. 2017). Then, the optimisation framework
has been derived, with two maximisation norms introduced: the classical L2 norm
and a norm based on vortex displacement. Numerically, this optimisation is performed
through time-stepping of a basis of one-dimensional inlet forcing functions and the
selection of their optimal linear combination.

After carrying out the optimisation, it has been found that irrespective of the
Strouhal number, chosen between 0.35 and 0.8, one should mostly force around the
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mixing layer position and mainly along the radial direction, as opposed to axial
velocity forcing, employed in most previous studies. By varying the Strouhal number,
the shape of the modulus of the optimal forcing does not vary much, but it undergoes
global shifts in phase. For practical applications, this shows that optimal perturbations
can be easily provided by a unique setup along a large band of Strouhal numbers
just by varying the phase difference with the axisymmetric forcing. Moreover, the
identified optimal forcing is virtually universal: it is independent of both the norm
and the hyperparameters chosen, such as the domain size or the time shift. This
universality is explained by a large gain separation between the optimal and all
suboptimal forcing: varying the optimisation parameters (norms, domain length) as
well as the physical parameters (time horizon To, phase difference of the chosen To,
vortex chosen to optimise around) has little influence on the final result. The gain
grows exponentially with Strouhal number, before saturating around St= 0.75, and it
is at least five times larger than that achieved with simple ad hoc forcing strategies.

Finally, three-dimensional DNS have been carried out to validate the results. A
low forcing amplitude of 1 % has been chosen for the helical forcing. It has been
found that the linear optimal forcing performs extremely well over the entire band of
Strouhal numbers 0.35 6 St 6 0.8, leading to a large flaring of the jet and, therefore,
a large improvement of its mixing efficiency. Two kinds of flow topology have
been found: for Strouhal values below 0.55, a classical bifurcating jet is obtained,
whereas for Strouhal numbers above 0.55 a third central structure emerges. In all
cases, comparisons with ad hoc forcing strategies show that the optimisation triggers
bifurcation much more efficiently, by moving the bifurcation point upstream, and
leading to a stronger displacement of vortices; further, that this triggering can occur
over a very large Strouhal band, compared with the narrow band in which bifurcation
is found for non-optimal forcing strategies.

Mathematically, in this study, we have derived a framework to carry out linear
optimisation over periodic flows for long time horizons. Physically, our work provides
a better understanding of the bifurcating jet phenomenon. Even though our study
focuses on a laminar bifurcating jet at moderate Reynolds number, previous results
(Tyliszczak & Geurts 2014) have shown that the turbulence level in bifurcating jets
becomes important only when it exceeds the axisymmetric and helical forcings levels.
This implies that an optimal forcing for a laminar flow would remain close-to-optimal
for turbulent flows with a forcing amplitude adjusted so that it exceeds the turbulence
level. Moreover, Parekh et al. (1988) have shown that jet bifurcation could be
essentially triggered in similar ways both at moderate and large Reynolds numbers.
Wu et al. (2018) identified jet bifurcation as the optimal way to increase mixing in
a turbulent jet.

An interesting question, outside the scope of this study, would be to precisely
understand the effect of turbulence and Reynolds number on our results. To do so, one
could rely on a linear optimisation over the base flow of a turbulent phase-averaged
axisymmetric pulsed jet. Such an analysis would transpose the resolvent framework
to time-periodic (in an averaged sense) turbulent flows, and would be useful for many
other situations.
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Appendix A. Details on the displacement norm
From (2.35), the displacement norm can be written as

‖u′(To)‖
2
disp,Ωi

=
1
2

1
2π

∫ 2π

0

∥∥∥∥ dxi(θc, To)

dε

∣∣∣∣
ε=0

∥∥∥∥2

2

dθc. (A 1)

By introducing the original vortex position Xi(To) and the total vorticity of the ith
vortex Ωi,tot(To),

Xi(To)= Ri(To)er + Zi(To)ez =

∫∫
Ωi

rΩθ(r, z, To)x dr dz∫∫
Ωi

rΩθ(r, z, To) dr dz
, (A 2)

Ωi,tot(To)=

∫∫
Ωi

rΩθ(r, z, To) dr dz, (A 3)

the displacement norm can be rewritten as

‖u′(To)‖
2
disp,Ωi

=
1

4π

∫ 2π

0

∥∥∥∥∥∥∥∥
(∫∫

Ωi

rω′θ(r, θc, z, To)(x−Xi(To)) dr dz
)

Ωi,tot(To)

∥∥∥∥∥∥∥∥
2

2

dθc, (A 4)

=

∥∥∥∥∥∥∥∥
(∫∫

Ωi

rω2,θ(r, z, To)x dr dz
)
−

(∫∫
Ωi

rω2,θ(r, z, To) dr dz
)

Xi(To)

Ωi,tot(To)

∥∥∥∥∥∥∥∥
2

2

, (A 5)

with ω2,θ ∈C in general.

Appendix B. Optimisation details
B.1. Optimisation with the L2 norm

Let f j denote the orthonormal basis of forcing functions (1 6 j 6 6N) in the (u2, p2)
framework (see table 1):

f j = (u2f ,1,r,j, u2f ,1,θ,j, u2f ,1,z,j, u2f ,2,r,j, u2f ,2,θ,j, u2f ,2,z,j)
t, (B 1)

each of these associated with a response vector rj in the (u2, p2) framework,

rj = (u2,r,j, u2,θ,j, u2,z,j)
t. (B 2)

All these forcing and response functions are real. We want to find an optimal linear
combination

∑
j(αj + iβj)f j such that
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α
β

]
= arg max
‖α+iβ‖=1

∥∥∥∥∥∑
j

(αj + iβj)rj(To)

∥∥∥∥∥
2

2

, (B 3)

= arg max
‖α+iβ‖=1

〈∑
j

(αj + iβj)rj(To),
∑

k

(αk + iβk)rk(To)

〉
, (B 4)

= arg max
‖α+iβ‖=1

∑
j,k

(αjαk + βjβk)〈rj(To), rk(To)〉, from (2.27), (B 5)

= arg max
‖α+iβ‖=1

[
α
β

]t [
A 0
0 A

] [
α
β

]
, (B 6)

with A the matrix such that Aj,k=〈rj(To), rk(To)〉. The leading eigenvector of A, a real-
symmetric positive semidefinite matrix (Gram matrix), gives the coefficients ai of the
optimal linear combination of f i and ri. The corresponding leading eigenvalue gives
the squared optimal gain of the operator. Then the optimal forcing can be written α=

cos(φ)a and β = sin(φ)b, for any φ ∈R.
The phase φ is arbitrary, and will determine the angle of the bifurcating plane.

Indeed, with φ = 0, that is, real α + iβ, the forcing is proportional to cos(θ) in the
axial and radial directions, and proportional to sin(θ) in the azimuthal one, leading
to a θ = 0 bifurcating plane, because the linearised equations for u2 (2.9)–(2.12) only
involve real coefficients, preserving this forcing plane. With another φ, this bifurcating
plane is shifted by −φ, as shown in figure 4.

B.2. Optimisation for the displacement norm

Each of the response structures rj induces a corresponding vorticity perturbation ω2,θ

that will be denoted ω̃j. As all forcing and response functions are real in the (u2, p2)-
framework, the ω̃j(r, z, To) are real as well. Again, we want to find an optimal linear
combination

∑
j(αj + iβj)f j such that

[
α
β

]
= arg max
‖α+iβ‖=1

∥∥∥∥∥∑
j

(αj + iβj)rj(To)

∥∥∥∥∥
2

disp,Ωi

. (B 7)

We introduce the 6N-size vectors R̃, Z̃ and ˜Tot such that

R̃j(To)=

∫∫
Ωi

r2ω̃j(r, z, To) dr dz

Ωi,tot(To)
, (B 8)

Z̃j(To)=

∫∫
Ωi

rzω̃j(r, z, To) dr dz

Ωi,tot(To)
, (B 9)

T̃otj(To)=

∫∫
Ωi

rω̃j(r, z, To) dr dz

Ωi,tot(To)
. (B 10)
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Therefore,∥∥∥∥∥∑
j

(αj + iβj)rj(To)

∥∥∥∥∥
2

disp,Ωi

=

∥∥∥∥∥∑
j

(αj + iβj)(R̃j(To)er + Z̃j(To)ez − T̃otj(To)Xi(To))

∥∥∥∥∥
2

2

, (B 11)

=

∥∥∥∥∥∑
j

(αj + iβj)

[
R̃j(To)− T̃otj(To)Ri(To)

Z̃j(To)− T̃otj(To)Zi(To)

]∥∥∥∥∥
2

2

, (B 12)

=

∑
j,k

(αjαk + βjβk)
[
(R̃j(To)− T̃otj(To)Ri(To))(R̃k(To)− T̃otk(To)Ri(To))

+ (Z̃j(To)− T̃otj(To)Zi(To))(Z̃k(To)− T̃otk(To)Zi(To))
]
, (B 13)

= 〈α,R′〉2 + 〈α, Z′〉2 + 〈β,R′〉2 + 〈β, Z′〉2, (B 14)

with R′ = R̃− Ri(To) ˜Tot and Z′ = Z̃− Zi(To) ˜Tot. We want[
α
β

]
= arg max
‖α+iβ‖=1

(〈α,R′〉2 + 〈α, Z′〉2 + 〈β,R′〉2 + 〈β, Z′〉2). (B 15)

Let us define γ as
γ = arg max

‖γ ‖=1
(〈γ ,R′〉2 + 〈γ , Z′〉2). (B 16)

This is a two-dimensional optimisation problem in the (R′, Z′)-plane. Because R′ and
Z′ are not collinear a priori, the problem (B 16) has a unique solution (up to the sign).
Then, the argument of the maximisation problem (B 15) can be bounded as

〈α,R′〉2 + 〈α, Z′〉2 + 〈β,R′〉2 + 〈β, Z′〉2 6 (‖α‖2
+ ‖β‖2)(〈γ ,R′〉2 + 〈γ , Z′〉2), (B 17)

6 〈γ ,R′〉2 + 〈γ , Z′〉2, (B 18)

because ‖α+ iβ‖= 1 in the maximisation. This bound is also achieved if and only if
both α and β are collinear to γ . Therefore, there exists a ψ ∈ [0, 2π] such that

α = cos(ψ)γ and β = sin(ψ)γ . (B 19a,b)

To solve the problem (B 16), the (R′, Z′)-basis is orthonormalised. We construct W
such that (R′/‖R′‖,W) is orthonormal as

W =
W′

‖W′‖
, with W′ =

Z′

‖Z′‖
−

〈
R′

‖R′‖
,

Z′

‖Z′‖

〉
R′

‖R′‖
. (B 20)

Then, 〈W, R′〉 = 0, 〈W,W〉 = 1 and the (R′/‖R′‖,W) basis spans the same space as
(R′, Z′). By writing

γ = cos(φ)
R′

‖R′‖
+ sin(φ)W, (B 21)
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one obtains

φ =
1
2

arctan


2
∥∥∥∥Z′ −

〈
R′

‖R′‖
, Z′
〉

R′

‖R′‖

∥∥∥∥〈 R′

‖R′‖
, Z′
〉

‖R′‖2 + 2
〈

R′

‖R′‖
, Z′
〉2

− ‖Z′‖2

[π2 ] . (B 22)

This gives four possible values for φ, but note that solutions φ and φ + π refer to
the same vector, only with opposite orientation. Of the two remaining values, one
corresponds to a minimum and is not considered, whereas the other corresponds to
a maximum. Then, any combination of (α, β) = (cos(ψ)γ , sin(ψ)γ ) is an optimal
solution, and, as shown in figure 4 and in appendix B.1, the choice of ψ fixes the
bifurcation plane.
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