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a b s t r a c t

This article deals with a global stability analysis of the screech phenomenon. We have shown that a
laminar underexpanded supersonic cold jet can exhibit globally unstable modes. A closer look at the
structure of these modes shows that they present upstream propagating waves, which is known to be
a major component of the screech phenomenon. Furthermore, we find a good agreement between the
frequency of the eigenmodes and existing empirical formulas for the prediction of screech frequency.
We have then studied the influence of two key parameters on the linear stability of the flow, the jet
pressure ratio (JPR) and the nozzle lip thickness, which are known to play an important role in the screech
phenomenon. Finally, a careful study of the structure of the unstable modes shows that the upstream
propagating acoustic waves of those modes are generated by supersonic phase velocity disturbances, a
well-known sound generation mechanism.

© 2014 Elsevier Masson SAS. All rights reserved.
1. Introduction

The study of imperfectly expanded supersonic jets is an active
subject of research since such flows can be found in a broad vari-
ety of industrial applications. Themost commonone ismilitary air-
crafts, whose engines often operate at off-design conditions. In this
article,we focus onunderexpanded jets,where the flowpressure at
the nozzle exit is higher than the ambient pressure. This mismatch
in pressure induces the apparition of a complex quasi-periodic
‘‘shock-cell’’ structure. The jet periodically overexpands and re-
converges, attempting to match the ambient pressure, and con-
sequently, forms a standing wave pattern. As a result, shocks and
expansion fans appear periodically, creating the so-called shock-
cells. Despite the fact that those flows are highly nonlinear, it is
possible to predict the gross features of such jets, such as the shock-
cell length, with a good agreement with experimental data [1–3].

One of the important features of supersonic jets is that they can
generate strong noise, a point which has been intensively studied
in the past decades. A large number of articles on the subject have
been written since the first work of Lighthill in 1952 [4]. One may
refer for instance to the review of Tam [5] for further details. It is
now known that the noise of shock-containing supersonic jets has
three components: the broadband shock-associated noise result-
ing from the interaction of instability waves and the shocks, the
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turbulent mixing noise generated by the turbulent fluctuations,
and the screech tones, which are the subject of this article. More
information about the two first noise components can be found in
Tam 1995 [5].

The screech phenomenon was first studied in 1952 by Pow-
ell [6]. He observed that, under certain conditions, supersonic im-
perfectly expanded jets can produce very loud discrete frequency
tones, the so-called screech tones. This phenomenon can be so in-
tense that in real flight conditions, it can damage the structure of
an aircraft. The first observation of such damages was made by the
British Aircraft Corporation in the 1960s, where in-flight measure-
ments showed that screech was responsible for minor cracking on
VC 10 aircrafts [7,8]. Such concerns do not affect most of mod-
ern commercial engines though, and usually, screech tones are ob-
served only with military aircrafts.

In one of his papers, Tam [5] refers to screech as ‘‘the least un-
derstood, least predictable component of supersonic jet noise’’. In-
deed, many questions, such as the prediction of the amplitude of
the noise, or its sensitivity to the surrounding environment, have
remained unanswered. However, the dominant physical mecha-
nism is known and has been described by Powell [6] as a feedback
loop between the shocks and the nozzle lip: instability waves de-
veloping in the shear layer interact with the shocks, giving birth
to acoustic waves propagating upstream.When those waves reach
the nozzle lip, they are reflected and excite the shear layer, giving
birth to new embryo perturbations that undergo the same process,
closing the resonant loop.

There is abundant literature available on the topic of screech-
ing jets: as mentioned in Raman 1999 [9], from Powell’s first
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Fig. 1. Scheme of the physical configuration of the flow (nondimensional quantities). The two variable parameters are the JPR and the lip thickness hl .
observation to now, more than 200 papers have been published.
An extensive bibliography and a detailed review on screech can be
found in the article of Raman [8]. But despite the large amount of
studies that can be found on the topic, our knowledge of the phe-
nomenon remains mainly qualitative. The only real quantitative
prediction available is the frequency of the tones [6]. This lack of
understanding is the reason screech is still an active field of re-
search. But, to our knowledge, screech has never been studied in
the light of a linear global stability analysis, which is the purpose
of this article.

Recent works have shown that stability theory appears as a
very successful framework for sound prediction in jets. We can
cite for example the article of Lesshafft [10] on global modes in
adapted subsonic hot jets, the work of Ray and Lele [11] on broad-
band shock-associated noise in supersonic underexpanded jets
using parabolized stability equations (PSE), or Nichols [12], who
performed a global mode decomposition on supersonic adapted
jets. The case of screech presents one strong particularity: as briefly
explained above, one of the key features of a screeching jet is
that it presents upstream propagating acoustic waves that play a
major role in the instability process. Consequently, a stability anal-
ysis based on PSE is unable to capture such upstream propagat-
ing structures and cannot therefore be used here. On the contrary,
a global stability analysis [13,14], in which both the cross-stream
and stream-wise directions of the perturbation are solved for, is
able to capture upstream-propagating waves and may also han-
dle more precisely the non-parallelism induced by the shock-cell
structures. In the present article, we aim at finding an underex-
panded supersonic jet that is globally unstable, and analyze the link
between the unstable structures and the screech phenomenon.

The outline of the paper is as follows. After a brief reminder
on global linear stability theory and on the numerical strategy
adopted to perform the study, we will present an underexpanded
jet configuration that ismarginally unstable, and relate the features
of the unstable global mode to screech. Then, we will assess the
effects of two key parameters, the jet pressure ratio (JPR) and
the lip thickness. In the last section, we will focus on the noise
generationmechanism associatedwith the unstable globalmodes.

2. Physical configuration and linear global stability analysis

2.1. Physical configuration and governing equations

We focus on two-dimensional cold jets of air surrounded by a
co-flow. In this study, the jet pressure ratio (JPR), defined as the
ratio between the static jet pressure and the ambient pressure, and
the lip thickness are the two parameters that will be varied. All
other parameters of the configuration are fixed: the Mach number
of the co-flow is 0.5, while the Mach number of the jet is 1.02.
The height of the nozzle exit is equal to 3 mm. The stagnation
temperature of both the jet and the co-flow is T0 = 288 K, the
Prandtl number is 0.72 and the viscosity follows a Sutherland law,
with standard coefficients for air. The static pressure of the ambient
air is set to 3000 Pa. The static pressure of the jet, and thus the
Reynolds number (based on the jet velocity, the height of the
nozzle, and the static density/temperature of the jet) depend on
the JPR. The value of the height of the nozzle and the static pressure
of the ambient air have been chosen such that, for all the studied
JPR in this paper, the order of magnitude of the Reynolds number
is 103, ensuring that the flow is in a laminar transitional situation.
To simplify the study, we have imposed adiabatic slip conditions
on the walls of the nozzle, so that the boundary layer thicknesses
(inside and outside the nozzle) are zero at the nozzle exit: the effect
of the boundary layer thickness is left for future work.

The flow dynamics is modeled using the compressible 2D
Navier–Stokes equations, that can be recast in the following com-
pact form:

dq
dt

= R(q), (1)

where q = (ρ, ρu, ρv, ρE)T designates the variables describing
the flow (density, streamwise momentum, cross-stream momen-
tum, total energy) and R(q) designates the conservation of mass,
momentum, and energy equations. From now on, we consider that
all quantities are made nondimensional using the jet velocity, the
height of the nozzle, the static pressure and density of the ambient
air (see Fig. 1).

2.2. Global mode decomposition

A baseflow qb is defined such that it is a stationary solution of
Eq. (1). Therefore, we have R(qb) = 0. If we consider a small per-
turbation q′ around the baseflow, q = qb + q′, the linearization of
(1) yields the following governing equation for the perturbation:

dq′

dt
= Aq′, (2)

with A =
∂R
∂q


qb
, the linearization of the operator R around the

baseflow.
A global mode decomposition consists in finding particular

solutions of (2) under the form

q′(x, y, t) = eλt q̂(x, y), (3)

where q̂ are the so-called global modes of the system and λ =

σ + iω is a complex scalar describing the time-behavior of the
structure (σ is the amplification rate and ω the frequency of the
mode). They describe the asymptotic behavior of the flow with
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Fig. 2. Computational domain and boundary conditions. Sponge regions are in gray and the physical domain of interest is in white.
respect to small disturbances. Injecting this particular expression
into (2) leads to the following eigenproblem:

Aq̂ = λq̂.

It is seen that the global modes q̂ correspond to the eigenvectors of
A, and λ to the eigenvalues. A global stability analysis consists in
finding eigenvalues/eigenvectors displaying positive amplification
rates.

2.3. Numerical strategy

All the computations were performed using the compressible
elsA solver developed at ONERA. The spatial discretization of the
governing equations is based on a second-order finite-volume
conservative formulation. We use a Jameson numerical flux with
scalar dissipation with Martinelli correction for the convective
fluxes, and a second-order centered scheme for the diffusive fluxes.

The computational domain has 810 nodes in the streamwise di-
rection, and 435 in the cross-stream direction, and covers an area
of (165 × 44). Sponge regions, necessary to damp spurious reflec-
tions on the boundaries of the domain have been added. We im-
pose respectively supersonic and subsonic injection conditions for
the jet and the co-flow. Similarly to thework of Prudhomme [15], if
the flow reaches the downstream boundarywith a subsonic speed,
we impose its pressure to be equal to the static pressure of the co-
flow, if it is supersonic, no conditions are imposed. Fig. 2 shows the
sponges, the physical domain of interest and the boundary condi-
tions.

For the baseflow computations, a local time-stepping strategy
is adopted, with CFL numbers equal to 30, and a time discretiza-
tion based on a first order implicit Euler scheme. In any case, we
checked that the explicit residuals decreased by ten orders of mag-
nitude, to ensure the quality of the baseflow.

The stability analysis is conducted using a fully discrete ap-
proach, where the residual R is a vector-valued operator, and A
corresponds to its Jacobian matrix. The extraction of the Jacobian
is performed using a first-order finite difference method. Since the
following approximation holds for any vector u:

Au ≈
1
ε


R(qb + εu) − R(qb)


, (4)

where ε is a small parameter, we can performmatrix–vector prod-
ucts with a set of well-chosen vectors to explicitly compute all
non-zero coefficients of the Jacobian matrix. In order to limit the
number of residual evaluations that are needed to extract the Ja-
cobian matrix explicitly, we can optimize this choice. Relation (4)
shows thatwhen the discretization stencil of the residualR is com-
pact, A is sparse. In this case, we can minimize the number of
required residual evaluations by choosing a set of vectors u con-
taining several non-zero components, far enough from each other
with respect to the stencil width, in order to maximize the num-
ber of non-zero coefficients of A contained in Au (see Mettot,
Renac, and Sipp [16]). We choose to define the parameter ε lo-
cally, based on the local values of the components of qb. The ac-
curacy of this finite-difference technique depends on the value of
ε: it has to be sufficiently smallwith respect to the local value of the
baseflow qb but not too small to avoid round-off errors. We chose
εi = min


εm(|qbi |+1); |qbi |/10


, where qbi is the ith component of

qb, and εm = 10−6. To check the accuracy of the computation, we
made sure that the same eigenvalues were obtained with Jacobian
matrices based on εm = 10−6 and εm = 10−7.

The spectrum of A is then computed using a shift–invert strat-
egy combined with Krylov methods (open-source library ARPACK
[17]). Matrix inversions were carried out by the sparse direct LU
parallel solver MUMPS [18]. Contrary to iterative methods, this
strategy provides very fast results, the limitation being an impor-
tant memory requirement.

3. Marginally unstable configuration and associated mode

3.1. Physical configuration

We consider a configuration as described in Section 2.1, with
a JPR equal to 1.12 and a lip thickness hl = 0.063. With those
parameters, the Reynolds number is 3020.

3.2. Baseflow computation

Fig. 3 shows the computed density field. We can see the ex-
pected shock-cell structures. We have checked that this solution
is spatially converged by considering meshes that are twice more
dense, respectively in the streamwise and cross-stream direction.
Wehave in particular compared the pressure distribution along the
central line of the jet for the different computed fields. The maxi-
mum relative error, defined as

max
x∈[0,xmax]


|p(x) − pref (x)|

pref (x)


,

where p is the pressure distribution along the central line corre-
sponding to the denser meshes, and pref , to the original mesh, is
inferior to 5%.

Finally, to check the validity of our computed baseflow, we
have compared the length of the computed shock-cells with Tam’s
formula [3]:

ls = 2


M2

j − 1

Mj


1 +

γ−1
2 M2

j

1 +
γ−1
2

(γ+1)/2(γ−1)

, (5)

where γ is the heat capacity ratio, ls the nondimensional length of
the shock-cells, and Mj, the fully expanded Mach number, defined
as (see Berland et al. [19]):

Mj =


2

γ − 1


1 +

γ − 1
2

M2
e


JPR(γ−1)/γ

− 1

. (6)
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Fig. 3. (a) Density field of the computed baseflow (JPR = 1.12, hl = 0.063). One can notice the expected shock-cell structure. (b) Zoom on the exit of the nozzle, on which
we have represented the main features of underexpanded jets.
Fig. 4. Spectrum of the Jacobian matrix, for the marginally unstable configuration
(JPR = 1.12, hl = 0.063). Red dot: the marginally unstable eigenvalue, red line:
frequency prediction (Powell’s formula [6]).

For the studied configuration, the formula gives ls = 0.99. Using
the computed baseflow, we can measure the length of the cells,
for instance by evaluating the distance between two local pressure
maxima along the centerline of the jet. Table 1 shows that the
results are in very good agreement with Eq. (5).

3.3. Global mode decomposition

Fig. 4 shows the least stable eigenvalues corresponding to the
baseflow presented in the above section. We can see that there
exists onemarginally unstable global mode and a series of damped
global modes.

Fig. 5 shows the spatial structure of the marginal global mode.
One can clearly notice that the density field presents upstream
Table 1
Comparison between themeasured shock-cell lengths from the computed baseflow
(for the five first shock-cells) and the theoretical values ls = 0.99 (Eq. (5)), for the
case JPR = 1.12, hl = 0.063.

Shock-cell no. 1 2 3 4 5

Shock-cell length (comp. baseflow) 0.960 0.978 0.983 0.978 0.995
Relative error (w.r.t. formula (5)) 3.0% 1.3% 0.7% 1.3% 0.5%

propagatingwaves in accordancewith the screech phenomenon (a
video of the temporal behavior of the mode has been provided as
supplementary material (see Appendix A) for better visualization
of its spatial structure). We can observe that the radiated sound
field is out-of-phase on either side of the jet, in accordance with
most of the works carried out on rectangular and planar jets (see
the review of Raman [8]). However, it has also been shown that
rectangular jets can sustain a weak symmetric mode [8,20], but
several papers suggest that, in the strictly two-dimensional case,
this mode should not appear [20,21].

To confirm that thismode is indeed related to screech tones, we
have compared its frequency with empirical formulas. Powell [6]
provides a simple formula to predict the frequency of the tones,
given by

f =
uc

ls(1 + uc/ca)
, (7)

where f is the frequency, ls the length of the shock-cells, uc the
convective speed of the disturbance, and ca the ambient sound
velocity. This formula indicates that one period of screech corre-
sponds to the sum of the time needed for a disturbance to reach
the first shock (t1 = ls/uc) and the time needed for the gener-
ated acoustic waves to travel back from this shock to the nozzle
lip (t2 = ls/ca). This leads to a period for each screech cycle equal
to T = t1 + t2 = ls(uc + ca)/(ucca), from which one can easily
deduce Powell’s formula. The convective velocity uc is generally
taken equal to a · uj, with uj the jet velocity, and a a scalar around
0.5–0.7 [8]. Eq. (7) holdswhen the ambient air is at rest. In our case,
Fig. 5. Real part of the density field of the marginally unstable mode (JPR = 1.12, hl = 0.063). One can notice the upstream propagating waves, typical from screech. The
structures in the red rectangle propagate downstream. The black arrows show the direction of propagation of the acoustic waves.
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Fig. 6. (a) Spectrum of the JPR = 1.12 configuration (circles), with the evolution of mode A (red) and B (blue) when we increase the JPR, hl = 0.063. Brighter colors
correspond to higher JPRs. (b) Comparison between the analytically derived evolution of the frequency with respect to the JPR (based on Eq. (8), using Eq. (6) and (5)), and
the frequencies of mode A and B. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
since we have a co-flow, the convection speed of the perturbation
needs to be modified according to:
uc = a(uj − ua) + ua,

where ua is the ambient velocity. The acoustic feedback is also
impacted by the co-flow, and sound waves propagate back to the
nozzle with a speed equal to ca − ua instead of ca. This yields the
following final relation for the frequency prediction:

f =

a(uj − ua) + ua

 
ls


1 +

a(uj − ua) + ua

ca − ua

−1

. (8)

In the present case, this formula yields ω = 2π f ≈ 1.96. We can
see that the frequency of the unstablemode is in reasonable agree-
ment with this value (18 % of error, see Fig. 4). The discrepancy
could stem from the fact that global stability analysis performed
around baseflows may provide frequencies that are different from
those observed on saturated limit-cycles (see for instance [22]).We
can also point out that predictions based on (7) overestimate fre-
quencies for low values of Mj (and thus, low values of JPR) with
respect to experimental data (see for example [8]), in agreement
with the present results. Therefore, we expect better consistency
between the global mode frequency and Eq. (8) for higher values
of JPR (see next section). But those first results show that both
the structure of the mode and its frequency support the idea that
screech is linked to a global instability of the jet.

4. Influence of the jet pressure ratio

The influence of the JPR on the screech phenomenon is still an
open question, in particular there is no simple relation between
the JPR and the intensity of the tones [8]. Yet, we know that this
parameter plays a major role in the phenomenon since it has a
strong influence on the length of the shock-cells ls and on the
convective velocity uc . An increase of the JPR leads to a larger value
of Mj, and therefore larger values of uc and ls (see Eq. (5)), the
resulting effect being a decrease of the frequency.

4.1. Physical configurations

To assess the effect of the JPR parameter on the eigenvalues, we
consider seven configurationswith a fixed value of the lip thickness
hl = 0.063 but with JPR values ranging from 1.12 to 1.215, and
compute the associated spectrum. The studied values of JPR and
the corresponding Reynolds numbers are reported in Table 2.

4.2. Results

We have reported in Fig. 6 the full spectrum for JPR = 1.12
(circular symbols) and the unstable eigenvalues for higher values
Table 2
Studied values of JPR and corresponding Reynolds numbers (hl = 0.063).

JPR 1.12 1.13 1.14 1.15 1.16 1.18 1.215

Re 3020 3050 3070 3100 3120 3170 3270

of the JPR (other symbols). We can see that there are two families
of unstable modes (red and blue symbols), that will respectively
be called modes A and B in the following. The marginal global
mode described in the previous section is an A-mode. The spatial
structure of the new unstable mode (mode B) can be seen in Fig. 7.
Similarly to mode A, it exhibits upstream propagating waves in
accordance with the screech phenomenon. The twomodes exhibit
a frequency decreasing when the JPR increases, confirming their
link with the screech phenomenon. From Fig. 6(b), we observe that
the twomodes display a frequency inmuch closer agreement with
Powell’s formula as the JPR is increased.

One last point about those results can be commented: the
growth rate, for which we have no theoretical results, presents
an interesting behavior. Indeed, we can observe that mode A, the
first to become unstable, stabilizes againwhenwe increase the JPR,
while the other mode has, within the studied range of JPRs, a sim-
pler behavior, with a growth rate increasingwhen the JPR becomes
higher. This shows us that mode A is unstable only for a very nar-
row range of JPRs, meaning that mode B is certainly more relevant
for the study of screech, which is known to be a phenomenon oc-
curring for a wider range of JPRs.

5. Influence of the nozzle lip thickness

The lip thickness is another parameter known to have a major
influence on screech tones. As mentioned before, the mechanism
of generation of the tones is based on a resonant feedback loop
with upstream propagating acoustic waves that are reflected on
the lip and excite the mixing layer. The thicker the lip is, the
larger the reflecting surface is. The experiment of Ponton and
Seiner [23] reported that increasing the nozzle lip thickness tends
to significantly increase screech tone amplitudes. Also, we know
that screech ceases to exist when the fully expandedMach number
Mj is large enough [8], but it appears that even in such non-
screeching jets, it can be reactivated by adding a thickener on the
lip [24]. The frequency is also slightly affected by this parameter,
and tends to increase when hl is larger, as it has been shown for
instance by Kim [25]. But, to our knowledge, there is no prediction
formula accounting for this parameter. The influence of the lip
thickness is still one of the points that is not entirely understood
in the screech phenomenon.
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Fig. 7. Real part of the density field of mode B (JPR = 1.18, hl = 0.063). One can notice the upstream propagating waves, typical of screech, similar to what can be seen in
the other mode (Fig. 5). The black arrows show the direction of propagation of the acoustic waves.
Fig. 8. Eigenvalues of mode A (red) and B (blue) for different nozzle lip thicknesses
hl (JPR = 1.215). Lighter colors correspond to higher thicknesses. Remark: the
eigenvalues corresponding to the two higher lip thicknesses are very close, making
hard to distinguish one from the other. (For interpretation of the references to color
in this figure legend, the reader is referred to the web version of this article.)

Table 3
Values of lip thickness that have been considered for the parametric study (JPR =

1.215).

hl 0.0302 0.0392 0.0630 0.0728 0.0965

5.1. Physical configurations

To study the impact of the lip thickness on the global stability,
we consider five different lip thicknesses (see Table 3), with a fixed
value of the JPR = 1.215 (Re = 3270).

5.2. Results

Fig. 8 shows the evolution of the eigenvalues corresponding to
mode A andmode B. Mode A is stable for the three thinner lips, but
is unstablewith the two thicker lips. A similar behavior is observed
in mode B, which has a growth rate increasing when hl becomes
larger. As expected, the thicker the lip is, the more unstable the
modes are. The frequency is also slightly altered and becomes
higher for thicker lips, in agreement with the paper of Kim [25]
who pointed out that an increase of lip thickness causes a decrease
in screech wavelength and therefore an increase of the frequency.
One can also notice that the spectrum displays a saturation-like
behavior: we can see that both the frequency and the growth
rate are practically not altered when we compare the two smaller
or the two larger thicknesses. This behavior is reminiscent of
the experiments led by Raman [8], where the strength of the
oscillations of the jet increases when the lip becomes thicker,
until a certain point beyond which no appreciable change is seen
anymore.
6. Noise generation mechanism

We have identified two unstable modes related to screech, and
we have observed that they exhibit upstream propagating acoustic
waves. Here, we focus on the sound generation mechanism
responsible for the birth of those waves.

One of the well-known mechanism of sound generation is the
presence of supersonic phase velocity disturbances [5]. Global
stability analysis provides the temporal and spatial linear behavior
of the conservative variables of modes A and B. We have then
computed the associated vorticity field for each mode, using
a second-order centered scheme for spatial derivations of the
velocity (see Fig. 9). Then, the local streamwise phase velocity of
the resulting field is given by:

vx
φ = −

ω

∂φ/∂x
, with φ = arg(ω̂), (9)

where ω̂ is the complex vorticity field of the mode. We consider
the case JPR = 1.18 and hl = 0.063. As seen in Fig. 10, for the
two modes, there exist streamwise locations where vx

φ is higher
than the ambient sound velocity ca, confirming that the sound
generation is caused by the supersonic phase velocity mechanism.
Both modes display evenly distributed supersonic phase velocity
locations. Such observation is reminiscent of the work of Panda
et al. [26], where the convective velocity of coherent fluctuations
inside the shear layer, measured experimentally, presented such a
feature. One can see in the video showing the vorticity of themodes
(provided as supplementary material (see Appendix A) of this
article) that those regions correspond indeed to locations where
the structures accelerate abruptly.

As a remark, we want to point out that Eq. (9) is meaningless
where the vorticity is too small or equal to zero. Indeed, the
computed vorticity values need to be significantly greater than
machine precision or numerical errors due to the finite difference
scheme used to compute vorticity. The computed phase velocity
has no physical meaning in low-vorticity areas. Therefore, for both
modes, Fig. 10 shows the phase velocity only where we have
ensured that vorticity is high enough.

7. Concluding remarks

The screech phenomenon has been studied through a linear
global stability analysis. We have seen that, under certain cir-
cumstances, underexpanded cold jets can be globally unstable.
The associated unstable modes have a structure reminiscent of
the screech phenomenon. In particular, they all present upstream
propagating acoustic waves, whose frequency is in good agree-
ment with empirical prediction formulas such as Powell’s formula
[6]. We have performed a parametric study on two parameters,
the JPR and the lip thickness, and the behavior of the frequency of
the unstable modes is consistent with Powell’s formula. We have
also been able to identify the sound generation mechanism of the
modes: we have seen that all the modes contain supersonic phase
velocity disturbances, which is a mechanism that has already been
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(a) Mode A.

(b) Mode B.

Fig. 9. Real part of the vorticity field of the two unstable modes (JPR = 1.18, hl = 0.063).
(a) Mode A.

(b) Mode B.

Fig. 10. Colormap of the quantity vx
φ/ca , with vx

φ as the local phase velocity of the vorticity field, and ca = 1.04 the ambient sound velocity, for the case JPR = 1.18,
hl = 0.063. Only regions where vorticity is high enough with respect to numerical errors are shown.
reported as playing a role in screech tones in previous papers [5].
All those points showus that screech is indeed the result of a global
instability of the flow.

This study offers a new viewpoint on the problem of screech
tones. In particular, in aircraft design, where screech is something
that should be avoided, the fact that it can be described as a global
instability opens new possibilities for future works. For instance,
the problem of screech suppression has been intensively studied
during the past decades (see Norum1983 [27] ormore recently the
article of Ramakrishnan [28]). For this topic, we could for example
perform a sensitivity analysis of the global mode’s amplification
rate to see how and where we need to act in order to reduce, and
maybe suppress the instability.

Appendix A. Supplementary material

Supplementary material related to this article can be found
online at http://dx.doi.org/10.1016/j.euromechflu.2014.05.006.
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