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Widnall instabilities in vortex pairs
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In this article we analyze the cooperative three-dimensional short-wave instabilities developing on
concentrated vortex dipoles that have been obtained by means of two-dimensional direct numerical
simulations. These dipoles are characterized by their aspectafditiovherea is the radius of the
vortices based on the polar moments of vorticity dmds the separation between the vortex
centroids. In the inviscid case, we show that the selection of the antisymmetric eigenmode smoothly
increases witta/b: for a/b=0.208, the amplification rate of the antisymmetric eigenmode is only
1.4% larger than the amplification rate of the symmetric eigenmode. Véliker 0.288, this
difference increases up to 7%. The results of the normal mode analysis may be compared to those
of an asymptotic stability analysis of a Lamb—Oseen vortex subjected to a weak straining field,
following Moore and SaffmafiProc. R. Soc. London, Ser. 246, 413 (1975]. This theory shows

that the instability may occur whenever two Kelvin waves exist with the same frequenthe

same axial wavenumbdrand with azimuthal wavenumbens andm+ 2. Contrary to the case of

a Rankine vortexTsai and Widnall, J. Fluid Mech3, 721(1976], the presence of critical layers

in a Lamb—Oseen vortex prevents a large number of possible resonances. For example, resonances
betweenm=—-2 andm=0 modes lead to damped modes. The only resonances that occur are
related to the stationaryw(=0) bending wavesri= *+ 1) obtained for specific values of the axial
wavenumber. All these predictions are found to be in good agreement with the results obtained by
the stability analysis of the considered vortex pairs. At last, we present a nonautonomous amplitude
equation which takes into account all effects of viscosity, i.e., the viscous damping of the
amplification rate of the perturbation but also the increase of the dipole asped/fatilue to the
viscous diffusion of the basic flowfield. The low-Reynolds number experiment of Leweke and
Williamson[J. Fluid Mech.360, 85 (1998] is revisited under the light of these theoretical results.

We show that these theoretical results yield predictions for the amplification rate and for the
wavenumber that agree with the experimental observation20@3 American Institute of Physics.
[DOI: 10.1063/1.1575752

I. INTRODUCTION with two Kelvin waves of the same axial wavenumlierof

. . . . . . the same frequency and with the azimuthal wavenumbers
In this article, we analyze three-dimensional linear insta-

bilities of the family of concentrated two-dimensional vortexg1 aE.d m+2;[ Tsaf['ha:d WldnlaTI showed, in :rf[ﬁ cz:ljedof a
dipoles given in Ref. 1. These dipoles are parametrized b;{_:,n mhe vortex, fa severa res?cnancKesl or this xin ogc#r.
their dipole aspect rati@/b wherea is the radius of the s happens, for instance, for Kelvin waves wit

vortices based on the polar moments of vorticity &nd the (m=-1m+1=1) but also whgn 0=—2m+ 2:.0.) or
separation between the vortex centroids. (m=1m+2=3). For a vortex with a smooth vorticity dis-

The results presented in this paper may be helpful tdribution like the Lamb—QOseen vortex, one has to account for

explain some of the features obtained in the Leweke an{’® €xistence of critical layers where the azimuthal speed of
Williamson experiment. Here, we focus on the short-wave theé wave equals the angular rotation of the axisymmetric
perturbation leaving aside the long-wave instabfliiphese ~ vVortex. Widnall, Bliss and Ts&iapparently overlooked these
authors observed the selection and the growth of a shor@SPects since they concluded that the case of smooth vortic-
wave antisymmetric eigenmode characterized by the nondity distributions is qualitatively equivalent to the case of a
mensional wavenumbetb=28.16 and the nondimensional Rankine vortex. In the present article we aim at showing the
amplification ratec27b?/T'=0.94 wherel stands for the differences between a Lamb—Oseen and a Rankine vortex in
circulation magnitude of each vortex. One of the objectivegerms of inertial waves and short-wave perturbations. We
of the present paper is to give theoretical support to thesglso aim at understanding if this simplified model, i.e., a
observations. weakly stretched Lamb—Oseen vortex, is able to capture the
The short-wave instability has been fully described inessential physics of the development of a short-wave pertur-
the inviscid case by Moore and Saffrfafor a weakly bation in a complex flowfield like a vortex pair.
stretched vortex. Using a multiple time scale analysis based The effect of viscosity has been analyzed in the case of a
on the small parameter’/b?, these authors showed that in- short-wave perturbation developing on a homogeneous ellip-
stability may arise through a resonance of the straining fieldical flow. Landman and Saffmamgave a correction term for
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the amplification rate taking into account the viscous damp- a/b=0.208 a/b=0.288
ing effect on the perturbation. Note that the basic flowfieldis 1} . 1
not affected by viscosity in this case since velocity gradients e ’,:_—::\\ ;
in homogeneous flows are constant. In the present article we g5} ('(\’(ES,‘:\\ ; 05k
thoroughly analyze the effects of viscosity in the case of a SN \:}};ég"/ ) :
short-wave perturbation developing on vortex dipoles. We 903_ T -0 o7 a0l
recall that viscosity affects both the basic flowfield through > [ jd >
the increase of the aspect ratidb and the perturbation _0'53_ osk
through the modification of the amplification rate. : A i
The selection of the antisymmetric eigenmode as ob- i oo ] !
served in the Leweke and Williamson experiment escapes to ™' Y Y i
the asymptotic method used by Moore and Safffreince ' b ' ' x/b

the theory On_ly accounts for the dynam|cs of one vortex_, t_h%IG. 1. Vorticity distributions of the dipoles foa/b=0.208,0.288. The
other being simply modeled by the presence of the strainingolevels represent the vorticity%¥27a%T. Dashed lines represent
field. Note that Leweke and Williams®showed on the basis negative values. These dipoles are steady solutions of the Euler equations
of a qualitative argument that the antisymmetric eigenmodésee Ref. 1

should be favored. But a quantitative result still lacks to sus-

tain their argument. Hence, one of the objectives of this pa- o ) )

per is to achieve a normal mode analysis of vortex dipoleé’ersusza/bv the levels of vorticity W, 27a°/I" and strain
that are characteristic of the Leweke and Williamson experi€.270°/I obtained in the center of the vortices in two direct
ment in order to investigate the properties of the symmetri@Umerical simulations presented in Ref. 1 and labeled

and antisymmetric eigenmodes. Billant, Brancher andnd(B). In both s_|mulat|ons, the initial flowﬂeld consists of
Choma? achieved that work in the case of the Lamb— two counter-rotating Lamb—Oseen vortices and the Reynolds
Chaplygin dipolé~2° Their results confirmed that the anti- NUMber is given by Rel'/»=3142. Att=0, the aspect ratio

symmetric mode is promoted but their basic flowfield is@/P of the dipoles is equal to 0.067 in simulati¢a) and

characterizetiby an aspect ratia/b=0.4478 much thicker 0-134 in simulatior(g). The straine, 27b*/I" is equal to 1 at
than that obtained in the experiment wheré~ 0.25. t=0 in both simulations due to the choice of the initial flow-

Note also that the weakly nonlinear regime of the wig-fields. Since the initial flowfields are not steady solutions of
nall instability has been described in Ref. 11. It was showrfn® Euler equations, the flowfields quickly evolve on the ad-

. . _ 2 . .
that these instabilities saturate, as observed in the experime¥gctive time scalel,=2ma“/I'. This can be obzserved In
of Leweke and Williamson. Fig. 2 with the large oscillations of the straén27b“/T" as a

The present paper is organized as follows. In Sec. II, wdunction of a/b. The dipole then rapidly adapts to a quasi-
present the dipole family obtained in Ref. 1. In Sec. IlI, Westeady2 solution of the Euler eqzuauons where the strain
analyze the inviscid stability of two vortex pairs of the dipole €.27b“/I" and the vorticityW, 2ra“/I" are close to 2.5 and
family, which are characterized by aspect ratidb equal to 2 reéspectively. Following Eloy and Le Digé’ these values
0.208 and 0.288. In Sec. IV, we focus on the inviscid stability2'® characteristic of weakly stretched Lamb—Oseen vortices.

of a stretched Lamb—Oseen vortex. We show that this sim- S€cond, we show that the flowfield obtained in the ex-
plified model explains well the results obtained in Sec. I11.Periment of Leweke and W|II|am56ns_very close to the

Section V is dedicated to the influence of viscosity. We will VOrtex pairs which belong to the family of vortex dipoles
present a nonautonomous amplitude equation taking into adresented in Ref. 1. It was shown in Ref. 1 that various initial
count both the effect of viscosity on the basic flow and on the
perturbation. We will show that these predictions are fully

compatible with the experimental observations of Leweke 25 - - Vortctyntheconter | 14
and Williamson. P S Strain in the center :
E 435
2E @ B ]
Il. PRESENTATION OF THE BASIC FLOWFIELD 22 F 13
[ 3 i -1 =
. . . . . ~21F i - i =
In Ref. 1, it was shown using 2-D direct numerical simu- “g JE B _.-="" Azg‘.o
lations that various initial dipolar vorticity distributions wRED S 1 &
evolve towards a specific family of dipoles parametrized by E E 32 o'
the dipole aspect ratia/b. This convergence was achieved 18E 1
through viscous effects. Nevertheless, viscosity is suffi- “E 415
ciently small so that we can consider these solutions as 16 F ]
steady on the time scales considered here. The vorticity dis- Y T S SR I .
o ) . - . 005 01 015 02 025 03
tributions of two vortex pairs belonging to this dipole family alb
and characterized bg/b=0.208 anda/b=0.288 are shown » o _ ,
in Fig. 1. FIG. 2. Vorticity and strain in the center of the vortices veralis in the

. . . direct numerical simulationsW, and €_ characterize, respectively, the
We first show that these ba§|c flOWS exhibit weakly syrength of the symmetric and the antisymmetric part of the velocity gradient
stretched Lamb—Oseen type vortices. Figure 2 representgnsor in the center of the vortices.
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dipolar vorticity distributions evolve through viscous diffu- oore & (1978)
sion towards a specific family of dipoles parametrized by [asb=0.208 | 5 Anbeymmeric

a/b. In particular, Fig. 5 in this article shows that all vortic- “F s

ity distributions characterized bg/b=0.134 at the begin- s . SO ..’\..
ning of the simulation converged towards this famifpr i ,[ X /Z' K.‘
Re=3142 and Re15708) when the dipole aspect ratio 1k 1 X

reacheda/b=0.20. Now, Leweke and Williamson showed

that shortly after the stopping of the plate motion the velocity
profile of the flowfield can be fitted by the superposition of
two counter-rotating Lamb—Oseen vortices wéthh=0.15. ! j o
The Reynolds number of the experiment being quite small 025
(Re=T"1v=2750), this aspect ratio then progressively in- .
creases due to the viscous diffusion of the basic flowfield. O 'ki.' —
For instance, the instability starts to be visible whefiip

=0.24 and the linear regime holds on at least uafib FIG. 3. Widnall instabilities for the dipole characterizeddp=0.208 and
=0.285. Hence, it seems obvious that the experimental 2-[fe=+=.

dipole structures remain very close to the structures of the

dipole family vortex pairs presented in Ref. 1. rates of the antisymmetric modes for £Ra<3.2 are ap-
proximately 7% larger than those of the symmetric modes. In

lll. INVISCID STABILITY ANALYSIS OF THE VORTEX the case of a Lamb—Chaplygin dipole, characterized by

PAIRS a/b=0.4478, Billantet al® found that the amplification

] o . ] rates of the corresponding antisymmetric eigenmodes were
Lmeanzmg the Navier—Stokes equations around theapproximately 18% larger than those of the symmetric

steady basic flow, we look for unstable normal modes. Fopodes. Thus, the selection process of the antisymmetric in-
the basic flow lying in thex,y) pltanke, the normal modes are ggapjlities smoothly increases wityb. One gets:+1.4%
sought under the form e”e™¢(x,y), where ¢  \yhen a/b=0.208, +7% when a/b=0.288 and +18%
=u',v’,w’,p’ stands for the velocity and pressure perturbayhena/b=0.4478.
tions. k is the realOz wavenumber andr is the complex In Fig. 5, we give theDz vorticity of the antisymmetric
amplification rate. The vorticity field being skew-symmetric  nstaple eigenmode corresponding ath=0.208 andka
with respect toy=0, the eigenmodes can be decomposed- 6. |t represents a symmetric plot with respecy te0

into two independent subsets: (an antisymmetric mode is characterized by a symmetric plot
(1) the antisymmetric modes whewé is odd andv’ is even for the vertical vorticity and is compound of dipoles, char-
with respect toy=0; acteristic of the elliptic instabilities found in Refs. 13—15.

(2) the symmetric modes wherg is even andv’ is odd

with respect toy=0. IV. STABILITY ANALYSIS OF A STRETCHED

LAMB—-OSEEN VORTEX

The numerical procedure used to obtain these normal Moore and Saffman explaingéhow a vortex column in
modes is based on a matrix eigenvalue method. A spectral weak straining field could be destabilized. The stability
Chebyshev—Gauss collocation method is used to discretizanalysis of the Rankine vortex in a weak straining field has
the (x,y) derivatives. More details are given in Appendix A. been given by Tsai and WidnallHere, we show that con-

We first achieve inviscid stability analyses leaving asidetrary to what was argued by Widnait al.® a Lamb—Oseen
the influence of the Reynolds number which will be thor-vortex is quite different from a Rankine vortex as far as the
oughly investigated in Sec. V.

The results of the inviscid stability analyses (Rév
=) are given in Fig. 3 fora/b=0.208 and in Fig. 4 alb=0.268 T e e7s)
for a/b=0.288. Each plot gives the amplification rate 15 Y

o2mb?T of the symmetric(filled triangles and antisym- 1255_ _
metric (empty circle$ unstable eigenmodes verska. All N Y 2 :
unstable eigenmodes are nonoscillatitige imaginary part 1L © o) !
B &
L o

of o is zera. B! > %
In the casea/b=0.208, we obtain several distinct }:0-75:- o
unstableka intervals where the symmetric and antisymmet- o | K 5
ric amplification rates are very close. For example, for e * T
ka=2.26, the amplification rate of the antisymmetric . {"’ ° e

sy
e
<]
5.
Ob'oo

eigenmode is 1.4% larger than the amplification rate of the 025, ! \

symmetric eigenmode. This shows that the Widnall instabili- B B B — S

ties may develop independently on each vortex and that there ka

is almost no linear selection of the antisymmetric mode. The: g, 4. widnall instabilities for the dipole characterizeddfp=0.288 and
results of the casa/b=0.288 show that the amplification Re=-+c.
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a/b=0.208 ka=2.26 (w2ma?/T),, the same nondimensional axial wavenum-
1| ber (ka). and with azimuthal wavenumbera and m
[ + 2. The perturbation is then chosen as a particular linear
i \% combination of the two spatialr(#) structures of the
051 & Kelvin waves A and B. The axial wavenumbea of this
NN perturbation is chosen to be close tcaj. :
Lof r
= P e ka—(ka)c]=0(1). )
051 s % (2) On the time scale & we obtain the same linear oscilla-
[ tor as before with a forcing term on the right hand side
-1 ;. L (rhg). Removing the resonant part of this forcing term
05 0 0.5 yields the following equation for the complex amplifica-
x/b tion rateo of the perturbation:

FIG. 5. Vertical vorticity of antisymmetric unstable eigenmode &b

o r
=0.208, Re=+ andka=2.26. Dashed lines represent negative values. ——[ka—(ka).]

—+ia
€ A2mrale

Widnall instabilities are concerned. Note that some partial X
results have been given for the Lamb—Oseen vortex by Eloy
and Le Dizs1?

We consider a Lamb—Oseen vortex of circulatldand
radiusa in a weak straining field of strengte=T"/27b?.
The angular rotatiof)(r) of the Lamb—Oseen vortex reads
as

=BaBB (4)

o r ‘ ‘
;—lasm[ a—(ka)]

wherea,, Ba, @g andBg are complex constants that can be
computed numerically.

If the resulting real part o# is positive, then the flow is
unstable. In the general capew2ma?/T').,(ka).,m], one
has to evaluate numerically all the constants to determine

_ 1282 In the particular casenf=—1,m+2=1), there exists
Q(r)= ﬁf[l_e I (@) stationary @27a?/T"),=0 Kelvin waves for fixed values of

The strain is characterized by the streamfunction(ka)c' Here, due to the symmetries of the basic flow, one
h hato,= = = = | -
W= — 1/2¢f(r)cos X. As shown by Moore and Saffmdrthe  _on oW thata,=ap=a and fx=ps=f are real num

. . . ) . Th
radial structure of the functiofi(r) is determined so as to bers. Thus
obtain a steady flow on th@(1/e) time scale. One obtains o a T 2
<~ BN 17| g o azclka—(ka)]) . 5
f,,+f, 3Q/+rQH+4)f 0 ) € ,8 mTa“€
T rQ 2 @ A narrow band of instability exists. Its width igka

—(ka)|<pBla2mwa’e/ll and the peak of instability is

ith the followi lizati ditionf(r)/r°—1
wi e following normalization conditionf(r)/r as L foka— (Ka)., (in which caser — ).

r—o. A representation of the functiofi(r)/r? has been
given in Fig. 1 of Ref. 12. The straining field is 2.5 times
stronger in the center of the Lamb—Oseen vortex than a
infinity. As mentioned in Sec. ll, this value has been re-  In this section, we study the Kelvin waves on the Lamb-
trieved (see Fig. 2 in the direct numerical simulations per- Oseen vortex, in order to determine the values ®fng,k)
formed in Ref. 1, showing that the dipole family exhibits where there exists two Kelvin waves of the same frequency
vortices that are close to the theoretical model presented i, of the same axial wavenumbdr and with azimuthal

. Kelvin waves of a Lamb—Oseen vortex

this section. wavenumbersn and m+ 2.
We use a shooting method to solve the eigenvalue prob-
A. The Widnall instability mechanism lem of a Lamb—Oseen vortex fom=0, m==*1 and

We consider a flowfield constituted of the axisymmetricm: £2 Kelvin waves.

Lamb—Oseen vortex, the above defined straining field of

strengthe and a small perturbation. We substitute this devel-l_ Method

opment in the incompressible Euler equations and linearize

into the disturbance field. We then perform a multiple time ~ We linearize the incompressible Euler equations around
scale analysis based on the time scales2I” and 1£ (we  the Lamb—Oseen vortex and introduce the following small
suppose that 2a%/I"<1/e). perturbations:

(1) On the time scale 2a?/T, we obtain a linear oscillator s (k2 Mo+ wt)
which selects the Kelvin waves. The numerical proce-  (Vr :U9:0z:P )=(@F(r),G(r),H(r),P(r))e '
dure to obtain these Kelvin waves is given in Sec. IV B. 6)
We now suppose that there exists two Kelvin waves Awherev,, v, andv,, are the radial, azimuthal and axial
and B with the same nondimensional frequencycomponents of the velocity am is the pressure.
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FIG. 6. Resonances witm=*1 modes. Left: frequencies,27a%/T" vs ka. Center: frequencies,27a%/T in the critical layer zone versusa. Right:
damping rateso;2a?/T' versus the wavenumbéa. The solid line labeled with an empty square represents forflllia

Following Refs. 16 and 17 we are led to the following the number of their zeros in the radial directionthe pri-

second order equation:

et 2Y 2k?r 21| 2 m’>  2mQ’
R ) e R,
amikcQ 2k*Q 20| 7= 0 .
y(M?+K%r?)  yr (r’)"]2=0, ™
where a prime denotes the operatiédr and
rE(r)
Z(r)y=——, 8
(N==5 ®
y(r)=w+mo(r). 9

This equation along with the boundary conditiod$0)
=Z()=0 constitutes an eigenvalue problem for

mary mode, labeled=0 has no zeros, the mode labeled
=1 has one zero, efc.

The results are similar to those of a Rankine vortex when
w,27a%T>0 orw,27a%/T'<—1, i.e., when no critical lay-
ers are present. In this case, the modes are purely oscillatory,
i.e. w;=0. The asymptotic behavior, foka—0, of the
branch labeled 0, was given in Refs. 20 and 21:

2ma®> (ka)’[ 1 In2—vy
= In—+
r 2 ka 2

; (10

(O]

wherey=0.577215 is Euler’s constant. This branch is called
the slow branch since both the frequensyand the phase
speedc= w/k tend towards zero as the wavenumkegoes

to zero. On the other hand, the branches labeledl0, 2,

The solutions are obtained by the following procedure. €tC-, are called fast branches becaosew/k—o ask—0

[see formula(56a in Ref. 21]. We can see that resonances

(1) We transform the second order differential equation ofmay occur for specific values of the nondimensional wave-

Z(r) (7) into a first order differential equation of

(Z(r),Z'(r)).
(2) We consider the asymptotic behavior f@qr),Z’(r)) at
r=0 andr=oo,
Starting from these asymptotic values, the solutiofi7of
is obtained at a given radius;. This leads to two
couples: (Z (r¢),Z’.(r;)) and (Z_(r¢),Z"(r¢)). Typi-
cally, we start withr/a=0.1 andr/a=20. Integration is

3

numberka wherew=0.

Now, the linear dynamics of the Lamb—Oseen vortex
completely differs from that of the Rankine vortex when
—1<w,27a%/I'<0, i.e., when critical layers are present. In
the central and right plots of Fig. 6, we have sketched
w,27a%lT and w;27a?/T" against the vertical wavenumber
ka in this region. We see that the modes are no longer purely
oscillatory but are damped. This is due to the presence of

achieved with a classical fourth order Runge—Kuttacritical layers in the eigenmode. In critical layers, the azi-

scheme.
4
Z.(r)Z (r)—=Z_(r{)Z, (r¢) is zero. The iterative

muthal speed of the wave equals the angular rotation of the

We search values ofw such as the Wronskian axisymmetric vortex. Regularization of the critical layer is

achieved by viscosity thanks to the criterion given by Hin.

scheme is performed via a Newton—Raphson method iShortly speaking, this criterion states that the inviscid case
the complexw plane. A guess value is therefore neededshould be an asymptotic limit of the viscous case when vis-

to start this process.
(5) At the critical pointsy(r.)=0, the integration path is
modified according to the criterion given in Ref. 18.

2. Resonances with m ==*x1 modes

The oscillation frequencies of the modes=+1 are

given in the left plot of Fig. 6. We compare these results with

those obtained for the Rankine vortézee Ref. 19, Fig.

cosity tends to zero. More details are given in Appendix B.

The main consequence here is that, contrary to the case
of the Rankine vortex, there is no resonance betweemthe
=0 branch and then=1,2,... branches. The conclusion is
that the only possible resonances are those which occur at
w=0, ie., (@=0m=x1ka=2.26), (@=0m==1ka
=3.96), (w=0m==x1ka=5.61), etc.

Note that critical layers may also be regularized thanks
to nonlinearitie$?=2* In this case, the Kelvin waves in the

12.1-4, p. 23R Eigenfunctions corresponding to various critical layer zone could be purely oscillatory again. Actually,
modes are identified, as in the Sturm—Liouville theory, bythe nature of the critical laydriscous or nonlineardepends
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FIG. 7. Resonances witln=0 andm=2 modes. Left: frequencies,27a%/T of m=0 modes versuka. Center: frequencies,27a?/T" of m= —2 modes
in the critical layer zone versusa. Right: damping rates;27a?/T" of m=—2 modes versuka. The empty squares represent the values obtained by Le
Dizes (Ref. 24 in the two-dimensional case.

on a parametefthe so-called Haberman parameter in the  We have the following numerical results for the bending
two-dimensional casewhich compares the effect of viscos- wave labeled 1. Maximum instability occurs fokd),
ity to the effect of nonlinearitie&he amplitude of the Kelvin  =2.26 with an amplification rate equal te27b%/T"=1.38.
waves in the critical layer. The width of the unstable band jka— (ka).| <8.682/b>.
For the bending waves labeled 2 and 3, the unstable bands
are centered atk@).=3.96 and ka).=5.61, respectively,
3. Resonances between m =0 and m =—2 modes the corresponding maximum amplification rate8wb?/T

- . . being 1.39 in both cases. The width of the unstable bands
The oscillation frequencies of the modes-0 are given )
mal quenc g |ka— (ka)| are 14.4%/b? and 20.5%/b?, respectively. The

in the left plot of Fig. 7. A comparison with the case of a :
Rankine vortex given in Ref. 19, Fig. 12.1-2, p. 231, shows>aMe results were found by Eloy and le BiZe

that the dynamics of the two vortex models are similar. ThisD c . b h bil |
is due to the fact that there is no critical layer in the case_, omparison between the stability analyses
of the vortex pairs and the stretched Lamb—Oseen
m=0. vortex
The casen= —2 is similar to the casen=1. The criti-

cal |ayer zone Corresponds now to the region 0 The solid lines in FlgS 3 and 4 represent the results of
<w,27a’/T<2. As seen in the central and right plots of the asymptotic stability analysis. In the casgé&=0.208, we
Fig. 7 where we have represented the first four co-rotatingee that the symmetric and antisymmetric amplification rates
Kelvin waves, the modes become quickly dampedtasie-  collapse on the three curves given by the asymptotic stability
creases. Hence, a resonance with rifre 0 modes leads to analysis. Note also that no resonances between0 and

damped modes. This is different from the case of the Ranki=—2 modes have been found in the normal mode analy-
ine vortex® for which resonances witm=0 andm= —2 ses. This is in accordance with the conclusions of Sec. IV B.

Kelvin waves exist. This is different from the case of the Lamb-—Chaplygin
dipole® which exhibits an unstable band corresponding to

C. Stability analysis of a stretched Lamb—Oseen this resonance.

vortex

In this section, we consider the values af,(n,k) where v, EFFECT OF VISCOSITY
there exists two Kelvin waves of the same frequeacyof
the same axial wavenumbkrand with azimuthal wavenum-
bersm andm+ 2. These values have been determined in the  The dipole aspect ratio in the experiment of Leweke and
previous section. Indeed, we have shown that the only posailliamsor? is found to be equal ta/b=0.15 just after the
sible resonances are the followinfjw=0m=+1,(ka). stopping of the plate motion &F'/(27b?)=1. This quantity
=226, [w=0m==x1,(ka).=3.96) and [w=0m then evolves slowly through viscous diffusion, the Reynolds
==1,(ka).=5.61], etc. In each case, we apply the multiple number being equal to Rd/v~2750. In Ref. 2, p. 91, the
time scale analysis presented in Sec. IV A and determine thauthors claim that the shortwave antisymmetric instability
amplification rateo. Sincee=I"/27b?, the unstable ampli- starts to be visible arourtd=7s, i.e., attI'/27b?=4.9, when
fication rate reads as the dipole aspect ratio is equal &8b=0.24. According to

Fig. 14 in the paper of Leweke and Williamson, this linear
o2mh?/T = B\1— (ka—(ka).]a/ Bb?/a%)?, (1D regime holds on at least unttl’/2wb?=7.5, wherea/b
wherea and g3 are real constants. A narrow band of instabil- =0.285. The observed eigenmode is antisymmetric and its

ity exists. Its width islka— (ka).|<B/«aa?b? and the peak wavenumber is found to bleb=8.16. The observed ampli-
of instability is reached forka=(ka), in which case fication rate is equal to-27b?/T" =0.94.
o2mwb?IT'=B. These results have to be compared to those of the invis-

A. Introduction
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cid stability analyses achieved in Sec. Ill. Fatb=0.208 B. A nonautonomous amplitude equation
anda/b=0.288, maximum amplifications were obtained for

ka=2.26, whereo27wb?/T'=1.38. These discrepancies may ) ) o )
be explained. We consider the perturbation flowfieg?u(x,y,t) with

_ T
For the amplification rate, we have to account for theU=(U,v)  whereu andv stand for thex-component and
effect of viscosity on the perturbation. Landman andY-COmPponent velocity perturbation. Tlzecomponent veloc-

Saffmar showed that for a perturbation developing on an'¥y Perturbationw is related tou andv thanks to the incom-
elliptical homogeneous flow this viscous correction term Wasoressmlhty of the flowf|e|daxu_+ dyv +ikw=0. .
—4k%. Hence, in the present case, the amplification rate V€ cThoose the foIIoTwmg scalar prodd¢t:if uy
when Re=2750 should read aso27b2T=138  (U1:v1) anduz=(uz,v2)’,

—87k?b?/Re=0.78. This viscous correction seems too e e .

strong since the observed amplification ratecigmb2/T (ul,u2>=ﬁm wa (Up Uz toivy)dxdy, (12

=0.94.
as suggested by Laporte anWhere the star denotes the complex conjugate. The norm of a

For the wavenumber, S 9
Corjor?® and Laporte and Lewek&, one has to take into perturbation is therefore related to the kinetik energy based
y on thex andy velocity components of the perturbation.

account the viscous diffusion of the basic flow. The core i .
radius increases frora/b=0.15 at the beginning of the ex- il expenment_ of LeW‘?ke and Wiliamson, we have
periment up toa/b=0.285 at the end. Consequently, a per__concentrateclj vortex dipoles with small valuesadih. Hence,
turbation such a&b=8.16 corresponds tka=1.60 when in the following we assume that
a/b=0.196,ka=2.26 whena/b=0.277 ancka=2.33 when da 2v
a/b=0.285. Hence, the stability analysis results seem to be gt~ 3 (13
recovered if the selection process is established wdién
=0.277. The above reasoning, which was suggested by @:0 (14)
Laporte and CorjoRs° is erroneous since the instability starts dat 7’
to be visible whera/b=0.24, so that the perturbation grows dr
for wavenumbers that satisfga<<8.16x<0.24=1.96. This =
result remains unexplained by the stability analysis which dt
predictska=2.26. Note that Eq.(13) characterizes the time evolution of a
In order to give a correct interpretation of the experimentsingle Lamb—Oseen vortex but one can shoéwhat this re-
of Leweke and Williamson, we now present a linear nonauiation holds in vortex pairs whea/b remains small.
tonomous amplitude equation that takes into account the vis-  Choosing,L=b and T=2#7b?T as length and time
cous effects that affect both the basic flowfi¢ih increase scales, the eigenmodes and eigenvalues depend on three pa-
of the core radiusl) and the amplification rate of the pertur- rameters:a/b, kb and Re=I'/v. Remind that time depen-
bation (the viscous correction af27b?/T"). dance is achieved through the time evolution of the core
Note that this approach of an elliptic instability develop- radiusa only.
ing in a slowly diffusing Lamb—Oseen vortex has already In the following, v(a/b,kb,I'/v) and w(a/b,kb,I'/v)
been analyzed by Eloy and Le D& for cases whera/b correspond to the unstable eigenmode and adjoint mode
~\/Re"* with Re>1, \ being a given constant. This scaling relative to the eigenvalu¢o27b?/T'](a/b,kb,I'/v). The
corresponds to vortices with high values of the aspect ratieigenmode and the adjoint mode are normed in the following
a/b. In this case, the basic flow slowly evolves through vis-way: (v,v)=1 and{w,v)=1.

1. Introduction

(15

cous diffusion & slowly increases but the unstable eigen- In Appendix A 3, we show that

mode does not feel the viscosity. Indeed, using the viscous

e oot nlg g e > pomaen 8 [ A]_ 20 dmbl v )
9 ' "l T T  Real\“aam/) 19

the viscous correction and the inviscid maximum amplifica- d(th)
tion rate obtained foka=2.26 reads as #k?/[I'/(2mb?)] 27b
=8m(kb)*/Re~8m(ka)/(\* Re"?) ~128/(\* Re") which is  where A=(w,u) and A, is the initial amplitude of the
zero in the limit Re>1. eigenmode.

Now, the experiment of Leweke and Williamson, char-  The first term on the rhs of this equation represents the
acterized bya/b~0.25 and Re-2750, suggests the scaling amplification rate of a perturbation characterized by a wave-
a/b~ x/Re"?, x being a given constant. This corresponds tonumberkb and a Reynolds number Re developing on a fro-
lower values of the aspect rat@ghb. In this case, as observed zen basic flowfield with aspect rata/b. This term evolves
in the experiment, the viscous evolution time scale of thein time because of the diffusion of the basic flowfield which
dipole T,=2ma® v becomes equivalent to the instability results in an increase @f/b. This term also takes into ac-
time scaleT,=2mb?/T. Besides, viscosity now has an count the effect of viscosity on the perturbation.
impact on the amplification rate of the perturbation The second term on the rhs represents a correction term
since 4K?I[T/(27b?)] = 8m(kb)?/Re~8m(ka)?/x>  of the amplification rate due to the change in time of the
~128/y*~cst as Re-1. unstable eigenmode shape which is due to the diffusion of

Downloaded 23 Mar 2005 to 144.204.65.4. Redistribution subject to AIP license or copyright, see http://pof.aip.org/pof/copyright.jsp



1868 Phys. Fluids, Vol. 15, No. 7, July 2003 D. Sipp and L. Jacquin

1 ir
[
25 |
051 05|
) N
g of 8 of 'Y
3
v
05 -0.5F ame0.204
5 |
1 % S
L \ . . i . wxsn‘.zu
A '1 1 R 1 —O—— Symmetric &b=0.213
1 g e
kb
——— - Interpoiation a/b=0.288
A Antisymmetric a/b=0.288
O  Symmetric a/b=0.288
= =— = Interpolation a/b=0.208
a Antisymmetric a/b=0.208
[e] Symmetric a/b=0.208
12r
e +14%
e 05 ] BE 1 1y 05 ] ; 1 [ ‘A e
xb xb . o8f "(§§ £
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the basic flowfield. Indeed, the shape of the unstable obicu TN

eigenmode characterized by a fixed wavenunkiechanges 5 6 7 8 9 10 11 12

slowly asa/b increases. Physically speaking, this correction kb
term takes into account the re-projection at any time of the
unstable eigenmode on the new unstable eigenmode. Note
that a finite difference approach has been used to evaluate —eecmeee.Intecpolation be.284
numerically the derivativév/d(a/b). Note also that the ad- s b E§: mﬁ?ﬂf‘ Y
joint modew depends on the choice of the scalar product. LU | B e
But, the term{w,-) is independent of that choice so that this 2,2 || A it zts
correction term as well as relatiori6) hold whatever the 3 ~ - \
choice of the scalar produ¢t?2). %m .'

In the following sections, we numerically evaluate these a
two quantities as functions @/b andkb for Re=2750. % 0

hJ

2. Eigenmodes, adjoint modes and eigenvalues o e e T

The spectral Chebyshev—Gauss collocation method pre- o Kb ) ]
sented in Sec. Il is used to obtain the eigenvalue IG. 9. Upper plot: Norm of adjoint mode versk®. Middle plot: First

2 . erm of the rhs of Eq(16) versuskb. Lower plot: Second term of the rhs of
[o27b /F](z.i/.k),kb,F/V), the eigenmodes(a/b,kb,I'/v) g (16) versuskb. Case: Re-2750 and different values of aspect raith.
and the adjoint modesv(a/b,kb,I'/v). An example of

eigenmodes and adjoint modes is given in Fig. 8 kdr

=7.99, a/b=0.288 and Re2750. The antisymmetric and however, that the values of the antisymmetric eigenmodes
symmetric eigenmodegrespectively, adjoint modgsare  are higher than those of the symmetric ones. This indicates
given on the two upper plotsespectively, lower plojsThe that a non-normal behavior is more likely to appear in anti-
antisymmetric and symmetric adjoint modes are quite differsymmetric eigenmodes than in symmetric ones. For each as-
ent: the antisymmetric adjoint mode has a significant contripect ratioa/b, the norm of the adjoint mode is smallest
bution on the right hyperbolic stagnation point whereas thevhen the amplification rate is maximum. This can be seen
symmetric adjoint mode has a significant contribution on thewhen we compare the present plot to the middle plot of Fig.
point situated at the middle of the two counter-rotating vor-9 showing the correponding unstable eigenvalues. Hence,
tices. This proves that the receptivity of the antisymmetricnon-normal features are more likely to appear when the un-
and symmetric eigenmodes is different. stable eigenvalues are small.

The norm of the adjoint mode versk$ is given in the The middle and lower plots of Fig. 9 give the first and
upper plot of Fig. 9 for Re2750 and three values of the second term of the rhs of E¢L6). In the middle plot of Fig.
aspect ratio 4/b=0.213,0.251,0.284). The overall values 9, it is shown that the amplification rates of the unstable
around <w,w)1’2~2 are quite small, showing that non- antisymmetric eigenmodes are 14% larger than those of the
normality is weak in the case of Widnall instabilities. Note, symmetric ones in the cas¢b=0.288. This value should be
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compared to the 7% obtained in the inviscid case. &dr
=0.208, the antisymmetric and symmetric amplification
rates are the same. It also appears that the viscous damping
given by Landman and Saffman, obtained in the case of an
instability developing in a homogeneous elliptical flow, is
too strong here. As a matter of fact, Landman and Saffman
give, for the viscous correction term,o2mwb?/T’

= —8mk?b?/Re whereas the computations for the case
=0.208 yield 027b%/T'= — 4.57k?b?/Re which is nearly

two times smaller in amplitude.

In the lower plot of Fig. 9, we can see that the value of
the correction term accounting for the slow evolution of the
core radiusa of the vortices is around 0.1. This value repre- aH
sents typically a loss of 10% of the initial value of the vis- .
cous amplification rate. Note also that for small values of M ' \7("' ’
a/b and high values okb the correction term can be nega- 3 ’ /
tive indicating a possible acceleration of the instability due to [
non-normality. 1F

b=0.30

In (A/A,)

3. Interpolation of the different terms

. . . 4 5

In order to integrate numerically E¢16), we give ana- t T/(2nb?)
lytical formulas which interpolate the results obtained in theFIG 10U lot: Evolution ok function of time wrbati

. . - . . 10. Upper plot: Evolution oka as a function of time for perturbations

middle and lower plots of Fig. 9. We do not distinguish herecharacterized by different values kb. The dotted line corresponds to the

the antisymmetric and the symmetric eigenmodes. neutral curve where the rhs of E(.6) is zero. Lower plot: Evolution of the
The first and second terms of the rhs of E@6) as  growth of the perturbation as a function of time for different valuek tof

functions ofa/b and kb are interpolated in the following

way: for three different values d€b. For each curve characterized
2h? \/ a a 2 by kb, ka increases ask@)(t) =kbXxa(t)/b wherek, b are
77T =B\ 1- E(kbﬁ_z'% (alb)? constants and(t) evolves following Eq.(13). The dotted
lines represent, for Re2750 andkb=8.16, the neutral
3 Z—W(kb)z— 6 3><2_7T 1 (17  Curves corresponding to the annulation of the rhs of(E6),
Re " Re (alb)®’ and which have been obtained from E(?) and(18). Note
4 b Py 0.004 226 that the neutral curves obtained in the cakbs-6 andkb
_° —<w, > - T _( b— _) =10 are not displayed since they are nearly not distinguish-
Re a d(a/b) a/b a/b able from the neutral curves obtained in the clabe-8.16.
al2 a The amplitude of the perturbation grows whiea(t) is
X 208({ B) —1152( 5) +162 } located in the area enclosed by the two neutral curves and

decays outside. Hence, at the beginning of the experiment
(18)  (tI'/(27b?) =0), perturbations are damped in all considered
cases kb=6,8.16,10). Forkb=10, the amplitude of the

Note that the viscous damping term acting on the amplifica : ) 5 X
perturbation grows from time tI'/(27b“)=3 until

tion rate has been adjusted to fit the resultsatly=0.208. > } : .
These interpolations are valid roughly for 048/b<0.30  tI/(27b%)=8.5 where it starts decaying. The perturbation
and Re=2750. They are shown in the middle and lower plots€XPeriences a transient growth. The same behavior is ob-

of Fig. 9 in dashed, dotted and dashed—dotted lines. We s&"ved forkb=28.16 andkb=6 but the Eerturbation ainpli—
that the curves fit correctly the numerical results. tudes characterized, respectlvelyz, kip=8.16 andkb—26
start growing later, i.e., atl’/(27b“)=4.2 andtl'/(27b*)

=6.8, respectively.
In the lower plot of Fig. 10, we have sketched versus
We now integrate in time relatiofi6) in order to obtain  time the growth of the perturbation amplitude. Several
the total growth of the pertubation as a function of time:  curves obtained for various wavenumbers ranging fidm
A 2mb2 4w b oV T =6 to kb=10 are shown. All these perturbations experience
In—=f - — —<w, —> d(t—). (29 a transient growth: each perturbation characterized by a
Ao r Rea d(a/b) 2mb? given value ofkb appears at some time, grows exponentially
Be reminded that the interpolations are valid for &E8b  with constant growth, then saturates before decaying again.
<0.3, i.e., 2.%tI'/(27wb?)<8.5 in the experiment. Following Leweke and Williamson, the observed pertur-
In the upper plot of Fig. 10, we have sketched as a funcbation in the experiment is characterized lkly=8.16 and
tion of time the wavenumbé of the perturbation nondimen- starts to be visible atlI'/(2b?)=4.9. The linear regime
sionalized by the core radius Three curves are displayed with constant growth rate equal t027b?% T =0.94 then

4. Results

[oa
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holds on at least untill’/(27b?)=7.5. In our model, only the effect of viscosity on the basic flowfield and on the per-
the curves withkb=8.16 andkb=9 are compatible with turbation. It was shown that this approach yields predictions
these observations. Indeed, the perturbation obtained witfor the amplification rate and for the wavenumber that agree
kb=10 should appear earlier and the linear regime with conwith the experimental observations of Leweke and William-
stant growth rate should hold on only untll'/(27b?) =6. son. Viscosity increases up to 14%, the difference between
As well, the perturbations obtained fttb=6 and kb=7 antisymmetric and symmetric eigenmode amplification
should appear later, i.et'/(27b?)>6. The growth rate of rates in the casa/b=0.288 and Re2750. We have also
the perturbation characterized tiyp=28.16 is found to be shown that the receptivity of antisymmetric and symmetric
o2wb?/T'=0.99, which has to be compared to the experi-eigenmodes is quite different: the antisymmetric adjoint
mental value ofc27b?/I"=0.94. This prediction is quite mode has a significant contribution on one of the two hyper-
good. bolic stagnation points of the vortex pair whereas the sym-
As a conclusion, this model shows that the experimenmetric adjoint mode has a significant contribution on the
tally observed wavenumber and growth rate of the perturbapoint situated at the middle of the two counter-rotating vor-
tion are compatible with a model based on a linear nonautatices. However, the small values of the norm of the adjoint
nomous amplitude equation that takes into account both themodes show that non-normality is weak in the case of Wid-
effect of viscosity on the perturbation and on the basic flownall instabilities.
It also helps understanding the selection of the antisymmetric
eigenmode. Indeed, as mentioned earlier, the difference be-
tween the amplification rates of antisymmetric and symmetAPPENDIX A: LINEAR DYNAMICS OF THE VORTEX
ric eigenmodes reaches 14% fob=7.5 in the case/b

=0.288 and Re-2750. In this appendix we present the equations of the normal

mode analysis for a plane basic flowfield and the numerical
VI. CONCLUSION method which is used to solve these equations.

~ Inthe inviscid case, we have achieved a complete threer Normal mode approach
dimensional linear analysis of the Lamb—Oseen vortex for ) ) _
Kelvin waves characterized by=0, m=+1 andm= +2. The Cartesian components of the velocity of the basic
We have shown that the presence of critical layers damps #ow are
large number of co-rotating waves. As a consequence, only y= Wy, v=—"1y, W=0,

the stationary bending wavée =0,m= = 1,(ka).) may lead . . .
to Widnall instabilities. A weakly stretched Lamb—OseenWhere'p(X’y) Is the sireamiunction and the subscriptand

vortex is therefore not equivalent to a Rankine vortex, which’/ denote partial spaiial derivatives. The normal modes are

H ot qikz ! ! oA
displays additional oscillating Widnall instabilities resulting s?ugdht f'n tthe forlme_t € %(x,y) where ¢t_LtJ) tv(mw ,IE
from the interaction of generah andm+2 Kelvin waves. stands for the velocity and pressure perturbatigngs the

We numerically calculated the amplification rates related torealOzvyavepu_mber andis Fhe comple>§ ampllflcgtlon rate.
By linearizing the full incompressible Navier—Stokes

the resonances that occur for the stationary bending waves ~- . . . .

associated to the branches labeled 1, 2 and 3, following thgquatlons_ aro.und this basic flowfield, we obtain the follow-
asymptotic analysis of Moore and Safffiaand found the Ing equations:

same results as Eloy and Le Diz€ This asymptotic stabil- 0 A 9 R
ity analysis is used as a reference problem for the normal v W) —< S T)
mode analysis of the dipole family presented in Ref. 1,

which are quasisteady solutions of the Euler equations. Tw#vith the following linear operators:

ul
(U—VA)( (U’):O’ (A1)

dipole aspect ratios have been considered. In the a#se A=dot oo —K2 (A2)
_ ape . . . XX yy )

=0.208, the amplification rates of the symmetric and anti-

symmetric Widnall instabilities are very close. This means  V=4d,,—k?, (A3)

that the corresponding unstable eigenmodes may develop in-
dependently on each vortex. This result also shows that, in W=dxy, (A4)
_d|poles of aspect ratio equal tofb=0.2, t_he I|_near regime Q= Oxx— dyy— K2+ 24y dyy— 2Wy 3 — Wiy, (AB)
is unable to promote the antisymmetric eigenmode. The
amplification rates of the symmetric and antisymmetric =~ R= — (¢ydx— hxdy— thyy) A = 2ty Oxxt 2¢yxdxy
eigenmodes collapse on the curves obtained by the _ _ _
asymptotic stability analysis of a weakly stretched Lamb— Wady = Wydy= Wy, (A6)
Oseen vortex. For higher dipole aspect rat#dd=0.288, S= = (hydy— P dy+ Pyy) (Fyx— K2) + thxy (A7)
the amplification rates of the antisymmetric eigenmodes be- . ) )
come 7% larger than those of the symmetric ones in the 2= — (¥ydx— ¥y dhy) dxyt ol Oy +K7) =KW
resonance region of the bending wave labeled 1. (A8)
In the viscous case, a linear nonautonomous amplitudén these expressiong,,= 9%l 9xay, etc., andW is the Oz
equation for the development of a perturbation on a basiworticity of the basic flowfield:W= — (iy+ iy,). v is the
flowfield has been presented which takes into account botkinematic viscosity.
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2. Spectral Chebyshev—Gauss collocation method If u;=(uy,v;)" andu,=(u,,v,)7, the scalar product
We use a spectral Chebyshev—Gauss collocation methdatmduced in(12) reads as

to discretize the remaining andy derivatives(see Ref. 28 2 Ny Ny
First, we map the infinite domaif »<x,y<w on —1 Uy U)=—-—— UF (& ENUL(E &

b P y (U2 = (T N ) 2 2 LT (614U )
x="f(&), where|&|<1 and |x|<; +oT (& ,&)va(& €)1 (&) (&), (A14)

A9
y=09(£,), where |£]<1 and |y|<e; (A9) =Uuj'Nu,, (A15)
f(&)=H tanh L&+ A, erf(£,/Y,); (A10) WwhereN is a positive definite diagonal matrix, so thisif!
=N. Here the superscrigi designates the Hermitian.

g(&)=Hytanh 1 &+ Ayerf(&,/Y,). (A11) We therefore consider the following generalized

. eigenvalue problem:
Hy, Hy, Ay, Ay, Y, andY, are constants and erf is the 9 P

standard error function. M(t)v=ocNyv, (A16)
We use the exponential mapping (it9) because eigen- ) ) .

modes decrease exponentially at large distances. An addithereM (t)=ND(t) with M"=MT. Herev is an eigenvec-

tional term, built with the standard error function, has beerfor associated to the eigenvalue

introduced for better localization of the collocation points on  The eigenmodesv;(t), adjoint modes w;(t) and

the vortices. The contribution of this term vanishes at largetigenvalueso;(t) of this generalized eigenvalue problem,

distances so that the asymptotic properties of the thnh Parametrized by time, verify

function is preserved. N — :
The unknownsp=u’,v’ are then expanded in a double M®Vi(H)=oi(ONvi(L), (AL7)
truncated Chebyshev series: MT()w;(t) = o (H)Nw;(t), (A18)
N Ny H —
pxY)=2 3 BTIEIT (&), (a1 VIONO=L, (A9
wH(t)Nv; (1) =1. (A20)

with Ny+1 and Ny+1 Chebyshev polynomiald,(£) in

each direction. At any time,u(t) can be expressed in the basis formed
The unknownsp; ;=0 ;,0/; are then determined by en- by the eigenvectors;(t) following

forcing Eqgs.(Al) at (Ny+1)(Ny+1) points in the square

—1<,,6y<1. This method is particularly efficient if we u(t)zz [WiH(t)Nu(t)]vi(t). (A21)

take the Chebyshev—Gauss points: [

[ 2i+1
G=CO N2
=0 Ny eigenvecton(t).

2j+1
gJ'_Cos(zNerz ™ : , _ _
Equation (A13) vyields the following relation:
Calculations are performed in physical space so that the urw"(t)N(du(t)/at)=w"(t)M(t)u(t) so that
knowns are the values ¢li’ (¢;,&;),v' (& ,§;)) at each node
of the grid in physical space. We are thus led to a generalizeﬂ[WH(t)Nu(t)]
eigenvalue problem of the forlBv=oCv whereB andC  dt

We now consider one particular eigenvectdt), ad-
, 1=0-N, and joint mode w(t) and eigenvalues(t). We are interested
in the time evolution ofA(t)=wH(t)Nu(t), which corre-
sponds to the projection of the perturbation fiald) on the

are two matricesy is the complex eigenvalue andis the —IMT(Ow() Tu(t) + aw(t) HNu(t) (A22)
eigenvector which contains the values wf andv’ at all at '
nodes. Eigenvalues and eigenvectors are determined by a y
standardQ R method. Z[U*(I)NWS)] u(t)
o N vi(H[wH () Nu(t)] (A23)
3. A nonautonomous amplitude equation at = i i '
We now consider a basic flowfield that evolves with _ H
time, so that from now on the matr& depends on time. The = oW (HNu()]
perturbation flowfielde’*?u(x,y,t) with u=(u,v)T is gov- aw(t)]H
erned by the following equation: +2i { T NVi(t)}[WiH(t)NU(t)], (A24)
au—(t)=D(t)u(t), (A13) aw(t)]H
ot ~o(t)[wH(t)Nu(t)]+ o Nv(t) [[w"(t)Nu(t)].
whereD(t)=C B(t). (A25)
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TABLE |. Bending modes: a comparison between values given by the X Re(u'(x,y)) } Im(u'(x,y))
shooting methodsecond columnand values given by the 2-D collocation
method(third column. Only significant digits have been retained. 1}

Mode label Shooting method 2-D collocation method Sof |
0 0.52769697 0.52769697 T
1 0.057086548 0.0570865 ) . ) R )
0’ —1.6340331 —1.634033 = A : E T ! 2
1’ —1.4052029 —1.40520 2 Re(v'(x,y)) Im(v(x,y))
2’ —1.2852558 -1.28
3’ —1.2135359 27

a
6-L&r‘a‘_yé_n w a0
i

In order to obtain this last result, we have assumed that, at
any time, nearly all the energy of the perturbation

ikz .. ; e I
e U(X'y’t) IS_ in the unstable elgenmode This is “k_el_y to FIG. 11. One Lamb—Oseen vortex: eigenfunction of the bending mode la-
be the case in the experiment of Leweke and Williamison peled 1 in the caska=2.6764054. Dashed lines represent negative iso-
where only one identified smooth perturbation emerges fromalues. The location of the collocation points is given fordhit,y)). Re( )
the basic flow at some given wavelength. and Im( ) here designate real and imaginary parts of a complex.

One can then easily deduce that

5 -4 -2-1'9.1 3 5

H av(t) its have been given and the question mark means that the

dt '”A_O =o()—w (t)NT’ (A26) spatial resolution is not sufficient to capture the correspond-
ing eigenfunction. Agreement is excellent for eigenmodes

whereA(t) =w"(t)Nu(t) andA,=A(t=0). which have a simple spatial structure. For example, the bend-

The basic flowfield which evolves in time is character-ing mode labeled § with no zero in the radial direction, is
ized at any time by the dipole aspect ratia/b. obtained with a precision of seven digits whereas the mode
The eigenmode, the adjoint mode and the eigenvaluédbeled 2, with two zeros in the radial direction, is deter-
therefore depend om/b. They also depend on the spatial mined with a precision of only three digits.
structure of the perturbation in the direction which is Examples of eigenvectors are given in Fig. 11. The ra-
given by the nondimensional wavenumbkb and the dial and azimuthal structure of the eigenmodes enable us to
level of viscosity acting on the perturbation and whichbuild a strict relation with the eigenmodes given by the
is measured here by the Reynolds numberR&. Hence, shooting method.
we note [o2mb?/T](a/b,kb,I'/v), v(a/b,kb,T'/v) and As explained in Sec. IV B 2, bending waves whose fre-
w(a/b,kb,I'/v). The dependence on time is then recoverediuencies lie in the range 1< w,27a®I'<0 exhibit critical

using Egs.(13), (14) and(15). It is then easy to show that layers. Therefore, integration should cope with the complex
plane in order to capture these Kelvin waves. But this is not

o) _l1da ov  I' 4mb v (a27)  the case here and our code can therefore not extract these
gt b dtda/b) 2mb* Read(a/b)’ modes. Nevertheless when the corresponding critical layer is
located at large distances from the vortex cereempared
With Eq. (A26), we obtain the following final result: to the core radius the viscous layer has little influence on
) the spatial structure of the normal mode and our code is able
d Ini _ Uﬂ _ 4_779 WHN N to extract it. This is what happened with the present calcula-
Ag r Re a dalb)|’ tion since eigenmodes corresponding to the bending waves 2

r
d( 27rb2) and 3 have been obtained. These modes are purely oscilla-
(A28)  tory and the frequencies2ma®/T" are, respectively, 0.1094
and 0.1437. These values have to be compared with those

4. Comparisons between the shooting method given by the shooting method which are complex values:
and the spectral Chebyshev—Gauss collocation 0.109504+ 0.0001441 and 0.1467# 0.0002684. The corre-
method for a single Lamb—Oseen vortex sponding critical layers are located at./a=3.3870

0.002231 andr /a=2.8894+0.2639. We can notice a
terioration of the precision as the critical point penetrates
in the vortex.

The eigenvalues/eigenvectors given by the :spectra?L
Gauss collocation method are compared here to the shooti
method in the case of a single Lamb—Oseen vortex.

The computation has been performed with the following
parameterska=2.6764054, Re». We use 36 Chebyshev
polynomials in thex andy directions and the exponential The normal mode analyses of the vortex pairs are done
mapping was chosen withl,=H,=1.4548, Y,=Y,=1, using the following parameter settings. In the case of invis-
Ay,=A,=0. Comparisons between eigenvalues obtainecid calculations, we use 34 Chebyshev polynomials inxhe
with this code and eigenvalues given by the shooting methodirection and 70 in thg direction. The exponential mapping
are listed in Table | for bending modes. Only significant dig-was chosen wittH,=0.3134,Y,=0, A,=1, H,=0.3106,

5. Computations with the vortex pairs
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ka=0.945

[ 4 Kkaz5.35 225

kasd 46

ka=0

@ FIG. 12. Bending wave labeled 2 in
them=1 case: evolution of the eigen-

of ¢ ka=3.958

NE T 125 Alka)=0.189
5 = kaz0.945 frequencyw27a?/T" in the complexw
s f kan3.57 E plane (left) and of the corresponding
005F o5 critical pointr in the complex plane
) (right), for ka varying from 5.35 to 0.
0.1F 05
0.25
oasf n ob—t " L n-f..“
0 0.05 2 0.1 2 25
w, 2ra*T Re(rja)

Y,=0.2937 and\ = 1.5620. In the case of viscous calcula- whenka=3.958. Finally, wherka—0 we have the follow-
tions, we use 70 Chebyshev polynomials in thandy di- ing behavior: w27a?/lT— —0.0474+0.1144 and r./a
rections. The exponential mapping was chosen with —2.51+1.88 which corresponds to the point where the
=0.50, Y,=0.45, A,=1.50, H,=0.65, Y,=0.2937 and critical point given by the zero and the first branch coincide.
Ay=1.5620. This property is valid for all branches.
The eigenvalue problert¥) exhibits the following sym-
metries: if (w,m) is an eigenvalue, then{(w,—m), (w*,m)
APPENDIX B: CRITICAL LAYERS and (— »*,—m) are also eigenvalues. Now, when we con-
In this appendix, we discuss briefly the critical layers in sider the inviscid case as an asympto'_tic limit of the viscous
the Kelvin waves. We focus on the Kelvin wave labeled 2 in¢@s€ whenv—0, two out of four solutlgns have to be re-
them=1 case(see Fig. 6. In the left plot of Fig. 12, we Moved and only the symmety and — o™ remains. In Fig.
gave the locus of the eigenvalue@7a2/T in the complex 13, we have sketched the critical point and the integration
o plane, forka varying from 5.35 to 0. We see that the Path of a typical quadruplet of solutioms= =+ 5= iu where
eigenmodes are purely oscillatory kf>3.958. When the 9~ 0 andu>0. The two eigenvalues that must be removed
wavenumberka further diminishes, the frequency be- ~ @re scored out in accordance with Ref. 18.
comes complex with a positive imaginary part, which means
that the mode is damped. In the right plpt of F'g 12, We havGID. Sipp, L. Jacquin, and C. Cossu, “Self-adaptation and viscous selection
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