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Abstract

This paper presents a review of theoretical and experimental results on stability and other unsteady properties of aircraft wakes. The
basic mechanisms responsible for the propagation and the amplification of perturbation along vortices, namely the Kelvin waves and the
cooperative instabilities, are first detailed. These two generic unsteady mechanisms are described by considering asymptotic linear stability
analysis of model flows such as vortex filaments or Lamb—Oseen vortices. Extension of the linear analysis to more representative flows, using
a biglobal stability approach, is also described. Experimental results obtained using LDV, hot wire and PIV in wind tunnels are presented and
they are commented upon the light of theory.

0 2003 Published by Elsevier SAS.
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1. Introduction spans. In this regime, the wake unsteadiness is dominated
by small amplitude displacements of the vortex cores. Due
Two strategies may be considered to produce less harmfulto the presence of very sharp velocity gradients within the
wakes behind aircraft, see e.g. [19,24]. The first s to increasecores, this “meandering” of the vortices leads to the obser-
the characteristic radii of the final vortices so as to decreasevation of large amplitude velocity fluctuations in both LDV
the rolling momentum of a following aircraft during encoun- and hot wire measurements. PIV-measurements also show
ters. This effect may be achieved by introducing “as much the fluctuation of tip and flap edge vortices. Examples will
turbulence as possible” into the vortex system. The secondbe described in Section 4. These wind tunnel tests can be
strategy is to promote the development of cooperative in- prolonged by using a catapult facility, as described in [7].
stabilities occurring in a system of several vortices, which  The paper is organised as follows. Section 2 describes the
leads to destructive interactions between the two halves ofaverage properties of a vortex wake, considering at first a
the wake. Theoretical analysis and specific measurementssimple wake model, and then a wind tunnel experiment. In
are both needed to investigate this topic. Section 3 a review of basic linear mechanisms occurring in
As it will be shown, useful theoretical results are pro- yortex wakes is presented, with a particular emphasis on the
vided by linear stability analysis of generic flows. Linearin- kelvin waves and the cooperative instabilities. The review
stability theory enables the introduction of important phys- 5150 presents the kinds of methods that may be used to study
ical_ mechanis_,ms which lead to _unsteadiness. As for the ex-these mechanisms, such as vortex filament methods, asymp-
periments, wind tunnel tests give access to measurementgyiic methods, and biglobal instability analysis methods. In
within downstream distances limited to typically ten model gqction 4 some experimental observations of the unsteady
properties of a vortex wake are presented, and are discussed
~* Corresponding author. in the light of theory. Conclusions and perspectives are listed
E-mail addresslaurent.jacquin@onera.fr (L. Jacquin). in Section 5.
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Z/M In case of a single vortex paif, andb obviously correspond

b 5 —0— to the circulation of the vortices and their separation.

Zég 1\/-7 Y /l Moreover, these measures are still relevant in the case
b where the wake is composed of a larger number of vortices,

X
sinceb then corresponds to the distance between vorticity
centroids. In the case of an elliptic loading, the effective
span is related to the wing span through= (7/4)b.
Now, from conservation of vertical momentum, the lift,
1/2CpV2 S, is equal to the flux of vertical momentum of

Fig. 1. Sketch of the far-field wake downstream of a wing. the wake,pV.I"b. The circulation is therefore given by
I' = 2C1 Vb /mAR. For a landing transport aircraft one
2. Average propertiesof atypical vortex wake typically hasC ~ 1.5, AR~ 7.
In order to characterise the internal structure of the
2.1. A simple model vortices, several vortex core length-scales may be defined

(see [24]). A common definition is the “dispersion radius”,
In this section we first consider a simplified wake model C€0rrespondingto

composed of a single vortex pair. This approach allows 1 0o 00
us to introduce the main properties and length-scales of a2 — — / dz / dy{((v = yo)? + (2 — z0)?)w}, (3)
vortex wake and to relate these features to the properties r e b

of the generating wing. The configuration is sketched in . . .
Fig. 1. The wing is characterised by its lift coefficieft, wherey. andz. are the coordinates of the vorticity centroid

spanb, surfaceS and aspect ratio AR= 52/5. The mean in half a plang. Thi_s Ienth-scaIe pro_vides an e\_/a_ll_Jation of
flow velocity is notedV.. The vorticityw is directed in the tEe vorticity f|e|ﬁ d|srt))er3|on. Othe:jmtegr?]l definitions of
axial (x) direction, and is antisymmetrical with respect to € Vortex core have been proposed, and their properties are

the symmetry plang = O. discussed b.y.Jac.quin et aI.. [24]. However, as will be shown
The main measure of the intensity of the wake is the below, specification of a single measure of t_he vortex core
circulation, computed in a half-plane of the wake hardly reflects the actual structure of the vortices.
0 oo 2.2. An experimental illustration
r= / /a)dydz. Q)
% We now illustrate the properties of a realistic vortex wake

with some results taken from the wind tunnel experiment of
Jacquin et al. [24]. In this experiment the wake of a generic
A300 model was investigated by means of laser Doppler ve-
1 00 00 locimetry (LDV). The model had a wing sp@n= 448 mm
b=_— / / yo dz dy. (2) and was set in two configurations, a cruise configuration
r (noted “clean case”) and a high lift configuration (noted

A characteristic Iength—scale of the wake can then be defined
as the effective spain

—00 —00
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Fig. 2. Axial vorticity measured by LDV in the left-hand side of the wake of the A300 model of Jacquin et al. [24] in high-lift configuration, for damnstre
distancesX/b = 0.5 (a) andX /b =9 (b).
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“high lift”), with wings fitted with single block flaps. The lift ~ shows the tangential velocity after cylindrical averaging
coefficients were respectively; ~ 0.7 and 17. Tests have of the LDV measurements at a downstream distance of 5
been performed for a free-stream velocity, = 50 ms 1. wing spans behind the model for both configurations. This
The Reynolds number based on the aerodynamic cherd  figure reveals that at least two core length-scales are required
66 mm was Re~ 220000. Fig. 2 displays the axial vorticity ~to give an accurate description of a realistic vortex. One
in the left-hand side of the wake for the high-lift configura- may thus define an “internal core” (or “viscous core”) of
tion, measured at two downstream distankesorrespond- radiusri, rotating as a solid body, and an “external core”
ing respectively taX/b = 0.5 (a) andX/b =9 (b). At the (or “inviscid core”) of radiusr, which characterises the
first position (Fig. 2(a)), the wake consists of a vortex sheet region containing vorticity surrounding the internal core
which rolls up into several vortices. In addition to the wing (see [43]). In both configurations, the internal core is found
tip vortices, secondary vortices are formed at the discontinu-to be extremely narrow. The maximum velocity is reached
ities of the wing: the flap edges, the nacelle and the wing- for an internal radiug; which is less than 1% of the span
fuselage junction. Note the existence of a counter-rotating In an intermediate zone surrounding the internal core, the
vortex in the inner parts of the wake, close to the position of velocity law then follows a power law of the foram® with «
the inner edge of the flap. At downstream distaigé = 9 close to 05. This power law representation is particularly
(Fig. 2(b)), it is observed that all the vortices have merged clear in the logarithmic plot 3(b), which indicates the exact
into a single vortex in each half-plane. Things are similar value of the slopes for both configurations. Such a power
for the clean configuration, except that a smaller number of law is in accordance with the classical model proposed by
vortices are obtained due to the absence of flaps. Betz [2], which leads tax = 0.5 for a wing with an elliptic

The structure of the vortices after completion of the roll- load, and with the self-similar roll-up solution of Kaden
up and merging phases was investigated in detail. Fig. 3 (see [39]). In both configurations departure from these laws

occurs at an external core radius closex ~ 0, 1. Away
@ from this external core the velocity law grossly decays
asr~L. Note that for the high lift configuration, a ‘plateau’

| | | region, with a velocity almost constant, is also observed
Cloan case between the internal core and the power law region. Such
02[ ==~~~ 17 ----Hghiftcase |~ ~ a velocity plateau was also observed by Devenport et al. [6];
as suggested by these authors, this could correspond to a
remnant of the initial conditions due to a merging of several
cores. In the present experiment, the merging between the
wing tip and the flap tip vortices occurs closextt = 2.

A two scale model of the type

025

r<ry. Vg =Ar,
ri<r<r Vy=Br¢, 4)

MR IR AP TR I . _
0 0.05 0.1 0.15 0.2 0.25 03 rzra.Vo=1I/2rr

o |~

©) has been proposed to model the flow (the constants
and B are defined so as to ensure the continuity of the
V_e 025 & . . velocity field). This model is sketched in Fig. 4. The choice
E a ~ 0.5, r1/b ~ 0.01, r/b ~ 0.1 is suggested by the
experiment presented above, and is also consistent with other
experiments [43].
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Fig. 3. Tangential velocity law/y/V as function of the radial distance
from the vortex center, for the A300 model in clean and high-lift configura-
tions. (a) lin-lin plot, (b) log-log plot (from [24]). Fig. 4. The two core scales vortex model.
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3. Linear dynamics of wake vortices where & (r) = 1/r(d(r Vp) /dr) is the basic flow axial vor-
ticity andy (r) = m£2 (r) — w. With the boundary conditions

This section presents a review on basic linear mech- Z(0) = Z(c0) = 0, this equation constitutes an eigenvalue

anisms. We successively present the Kelvin waves (Sec-problem forw. This problem admits a countable infinity of

tion 3.1), the long-wave (Section 3.2) and short-wave (Sec- eigenvalues indexed as, , (k) wherek andm are the axial

tion 3.3) cooperative instabilities, the instabilities due to core and azimuthal wave-numbers and where the absolute value

axial flow (Section 3.4), as well as the specific method used of second indexx| is related to the number of zeros of the

to describe them. We then describe a more general stabilityeigen-function (the higher the label, the more radial oscil-

approach based on the biglobal method (Section 3.5). lations the mode contains). The sign:ofs used to distin-
guish different families of waves. Resolution is achieved us-
3.1. Kelvin waves ing a shooting method. Results are shown in Fig. 5 for the

axisymmetric modes: = 0 and the helical modes = 1.
Any perturbation in a rotating flow leads to the propaga- The frequencies are made nondimensional with the rotation
tion of dispersive waves, called inertia waves. These wavesrate of the vortex center, given 599 = I' /2 a2.
are equivalent to gravity waves in a stably stratified medium.
The inertia waves propagating along a vortex are named3 1.2, Axisymmetric modés = 0)

Kelvin waves. The case of a basic flow correspondingto a  For axisymmetric modesi( = 0), see Fig. 5(a), the re-
Rankine vortex (with constant vorticity core) has been ex- gyjts are very similar to those obtained with a Rankine vor-

tensively described in the literature (see e.g. [38,39]). Here tex. The waves form two families of branches which prop-
we consider the case of a Lamb-Oseen vortex with circula- ggate in opposite directions. Note that the group veloc-

tion I" and radius:. The angular velocity is given by ity dew, /dk, which corresponds to the slope of the differ-
Vo (r) r 2742

We restrict the study to the inviscid case which has been de-
scribed by Sipp [40], Sipp and Jacquin [42]. This study was
recently extended to account for the effect of viscosity by
Fabre [12], Fabre, Sipp and Jacquin [18]. Interestingly, it was
shown that only axisymmetriar{ = 0) and helical 2 = 1)
modes are significant, and that modes with azimuthal wave-
numbergm| > 2 are much more damped. Consequently we
restrict here to then = 0 andm = 1 cases. More realistic
models, such as the two scale model introduced above, were
also considered by Fabre [12]. Results do not differ much
from the Lamb—Oseen case.

olQ,

3.1.1. Method

In the inviscid case the Kelvin waves are described by
solving an eigenvalue problem resulting from the lineariza-
tion of the Euler equations around the basic flow specified
above. We introduce the following small perturbations

(W, v, v, p)) = (F,iG, H, P)(r)e krtmi=cn ©)

X2 Ur?

where v, v, v, are the axial, radial and azimuthal com-
ponents of the velocity angy’ the pressurew = w, +

iw; denotes a complex frequency. Following Howard and
Gupta [23], Lessen, Singh and Paillet [31], we are led to
the following second order equation for the variallle=
rG(r)/y(r)

7" —AZ —BZ =0 (7
with
Al e 2k%r

- r y m2 + k2r2’ . . . .

Fig. 5. Frequencieso, of the Kelvin waves in a Lamb-Oseen vortex:

B — k2 m2  2m’ dmk2§2 k25 (a) axisymmetric modes = 0, (b) helical modes: = 1. 2g = I'/27a?

= + — — — _ ,

V2 yr y(mz ¥ k2r2) )/2 (from [15]).
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ent branches, decreases with the wave-number. The fastestero whenk goes to zero. This mode takes the form of a

waves are found on the braneb 1 in the limit of long wave- helical displacement of the vortex core as a whole, and it
length &a — 0). The group velocity of this wave is foundto  actually corresponds to the self-induced oscillation mode of
be a filament vortex (see [39]). The frequency of this mode in
dewo,1(k) r the limit of long wavelengthia <« 1) has been obtained

di ~ 0-6327161- (8) using asymptotic methods by Moore and Saffman [34] and
Interestingly, in a Lamb—Oseen vortex, one finds that the Leibovich et al. [29];

This result means that the energy of axisymmetric pertur- ®+£1,0/§20~ F 2

bations propagates with a speed smaller than the maximum_ _ _ ) )
tangential velocity of the vortex: This mode plays an important role in the linear dynamics

of a vortex; in particular, it is involved in the long-wave co-
dewo.n (k) < Vo maxe operative instabilities that will be considered in Section 3.2.
dk Consequently, it might be interesting to have a uniform ap-
This property also holds for more realistic vortex mod- proximation of this frequency valid for atl. Fabre [12] pro-
els [12]. In the case wher&max/ Voo < 1, Which holds posed the following expression
in trailing vortices, energy of the perturbations is convected

maximum tangential velocity isV, ~ 0.63I'/(2ra). k2a? 2
d Y 1%Vomax /(ena) @ (In(—>—0.6358>. ©)

downstream, and the flow is thus supercritical. This property = ~_ F(ka)®Lo (In(z + Cslkal> +C )
prevents the possibility of perturbation energy travelling up- ' 2+ Cilka| + Ca(ka)? |ka| '
stream at a higher speed than that of the flow, a necessary (10)
condition for occurrence of a “hydraulic jump” leading to
vortex breakdown. The choiceC1 = 3.19407,C, = 1.46081,C3 = 8.13352,
C4 = —0.63518, which has been determined using a least-

3.1.3. Helical modegn = 1) square method, gives an accurate fit of the solution actually

Due to the symmetries of the base flow, one has = computed by the eigenvalue method for a Lamb-Oseen vor-

—w_1.,. Accordingly, the helical waves must be considered €X. Alternatively, the choic€; = 0.95508,C> = 0.43848,
by pairs, the left-handed modes & 1) propagating along €3 = 2.15048,C4 = —0.32722 can be used for a Rankine
the vortex core in opposite directions than their right-handed VOrtex.
counterpartsi = —1). We restrict to the case of left-handed ~ — The branches labellech ,,n = 1,2, ..., correspond to
modes. Some differences are observed with respect to thecO-rotating waves. The long-wave asymptotic behaviour of
case of a Rankine vortex, in particular for the modes which these branches has been given by Leibovich et al. [29]
possess a critical layer. Such modes occur whenever the 2(ka)?
angular phase speed of the perturbation/m, coincides  w1../20~1+ Tanein
with the angular velocity of the vortex2(r.) at some
radiusr., i.e. Ry (r.)} = 0. Form = 1 this condition occurs ~ These waves are sometimes referred to as “fast waves”
in the range O< w, < £20. The corresponding modes are because their phase velocity tendstoask — 0. However,
singular, and have to be regularised by the introduction of according to (11), the group velocity of these “fast waves”
viscosity (see [12]). A careful analysis shows that these tends to zero withk. Calculation of their spatial structure
modes are necessarily damped, g.< 0 (a necessary shows that in the limitk — oo, these modes become
condition for this is that the mean flow vorticitg (r.) at concentrated in a very small region near the vortex axis and
the critical radius be nonzero, and this condition is always that, consequently, they are strongly affected by viscosity,
fulfilled for a Lamb—Oseen vortex). Outside this interval, see [12].
the modes are regular and purely oscillatory. According to  — The branches labellegy _,, withn =1,2,... are ei-
their angular frequency, /m, these regular modes can be ther counter-rotating neutral waves, or damped critical layer
classified into co-rotating wave&,/m > £20) and counter-  waves. The transition occurs at particular wave-numbers
rotating wavesd, /m < 0). wherew, = 0, corresponding to steady Kelvin waves. For a
Fig. 5(b) displays the real frequencies of the helical Lamb—-Oseen vortex, see Fig. 5(b), these wave-numbers are
modes, with thin lines for the singular damped modes found to beka ~ 2.26, 3.96, 5.61, etc ... .. The superpitisn
and thick lines for the regular modes. It is found that of thesem =1 waves with theirn = —1 counterparts leads
helical modes are of three different kinds, which are now to steady untwisted perturbations. The vorticity field asso-
successively described. ciated with such a perturbation (fér: = 2.26) is shown in
— The branch labeled o corresponds to the wave with  Fig. 6. Such steady untwisted perturbations are particularly
the simplest structure (eigenfunction with no zeroes). This interesting because they can be destabilised by the straining
wave is counter-rotating, and is called the “slow wave” field imposed by other vortices. This mechanism is respon-
because both the frequency and the phase velacity sible for the Widnall instability, which will be considered in
w,/k (and also the group velocityegl/dk) tend towards detail in Section 3.3.

(11)
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At the leading order, linearisation of the Biot—Savart law
leads to the system

dYn nn Zn - Zm

dr 2r R%2

(13)

dZn Fm Yn - Ym
dr Z

where R2 = (Y, — Y,)2 + (Z, — Z,)?. This system de-
scribes the evolution of a set & point vortices. At the
following order, the equations which describe the evolu-
tion of the perturbation amplitude vect®r) = (y1, 21, . . -,

YN, Zn) may be written in the following form

dX(r)
S L)X (). (14)

The developed expressions of this linear system are given by
Crow [4] and Jimenez [26] for the cases of counter rotating
and corotating vortex pairs, respectively, and by Crouch [5]
and Fabre, Jacquin and Loof [15] in the general case. The
right hand side of (14) amounts to the superposition of
three effects: (i) the straining experienced by filament
when displaced from its mean position in the velocity field
induced by an undisturbed filamemt (ii) the self induced
rotation of the disturbed filamentand (iii) the velocity field
induced on the filament by the other vortices when they are
sinusoidally displaced from their mean positions.
Mechanism (i) may be easily understood when consider-
ing the 2D flow corresponding to a pair of straight counter-
rotating vortex filaments separated by a distahee b, as
in Fig. 1. In a coordinate system moving downward with
Fig. 6. Vorticity of the perturbation produced by the superposition of two a speed d/dr = —I"/(2rb), Imearlzf"‘t'qn of (13) argund
opposite Kelvin wavesn = 1 andm = —1 on a Lamb-Oseen vortex.  the centre of the vortex labelled 2, igb <« 1 with r< =
(a) Vorticity in the plane orthogonal to the vortex axis, (b) axial vorticity (v — Y2)2 + (z — Z2)?, leads to

from [41]).
(from [41]) dy/de\ I (0 1\(y 15
dz/dt )~ onp2\1 0/)\z )’
3.2. Long-wave cooperative instabilities This velocity field is that of a strain with rat&/(2752)
whose axes are oriented-a45° with respect to the horizon-
3.2.1. Method tal (x) axis. It leads to amplification of any perturbation of

As shown in Section 2.2, the wake issuing from a high the vortex centerline, the latter being displaced away when
lift designed wing is usually composed of several vortex it leaves its initial position.
filaments. In general, such a vortex arrangement is unstable The self induced rotation terms, mechanism (i), reads

with respect to 3D perturbations due to mutual straining of (djz,,/dt) r, o () < 0 1) (}A)n)
n

the vortices. Y — ) (16)
Following [4,5,15], a system of stability equations may be dn /cl 2maj -1 0\

derived by considering a set of parallel vortex filaments with Which introduces a dependence of the solution with respect

slight sinusoidal perturbations of their respective positions. t0 a measure,, of the vortex core radius. This dependence

We suppose that the centerline positidh(¢), Z,(r)) of the describes a self-induced rotation of the perturbed vortex

vortex filament labelled: is displaced with an amplitude in an opposite direction to that of the basic state. This

proportional to & wherex is the coordinate in the axial ~ effect results from the velocity that a curved vortex filament

direction induces on itself. Several methods have been used to
compute the frequency of this self-induced oscillation.
X, 0 =xe, + (Ya(0) +9n(t)eikx)gy Crow [4] initially used the Biot-Savart law with a cutoff

' method. Widnall et al. [52] and Moore and Saffman [34]
+(Zn (1) +2,,(t)e‘k")gz. (12) then identified this oscillation mode with the slow Kelvin
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Fig. 7. Four-vortex wake model. ST a0 " T
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wave described in Section 3.1, and evaluated its frequency 3 v
with the asymptotic expression given in Eq. (9) with the = o5 B | _ __ __ _ ]
positive sign. This method is valid in the long-wave limit 5
ka < 1, and it leads to the prediction of spurious short- 3 V [
wave instabilities outside its range of validity. A better L Divergent |
" " " n 1 "

method is to use the uniform expression (10) given above -1
(again with the positive sign) instead of the asymptotic ¢ e o !

one. If the vortices are not Rankine or Lamb—-Oseen ones, !

the constant€"1, Co, C3, C4 may of course be adjusted to  Fig. 8. Classification chart of the four-vortex configuratioes(s], O [14],
fit with the actual frequency computed with an eigenvalue aY: ONERA experiments, rectangular box: [15].

method. Alternatively, as suggested in [15], the result for a
Rankine vortex may be used in all cases provided that the
core radiusy, is defined as theffective core radiusf the
vortex (see [13,15] for further details).

3.2.2. Example: stability of four-vortex configurations

Let us consider the example of two vortex pairs, as
sketched in Fig. 7. The vortex pairs may be co-rotating
(I't > 0, I > 0) or counter-rotatingl(1 > 0, I'> < 0). The
first case may model wing tip vortices and flap tip vortices
whereas the second one could model merged wing and
flap tip vortices and merged inner flap and horizontal tail N L L . ‘
vortices. The stability of these configurations can be studied 0 5 10
using the vortex filament method presented above provided

that the core radii of the vortices are small with respect to Fig. 9. Growth rate of unstable eigenmodes as function of the axial wave
. . . number for the four-vortex stationary configuration with/I'; = —0.4,

their separations, i.e. bp/by = 0.14, a1/by = 0.1, ap/by = 0.05. S1, So: symmetric modes,

a1, ap K b1, bo, (b1 —b2)/2. (17) A: antisymmetric modes. Modg is the Crow instability mode (from [14]).

10F

kb,

The system (13) which describes the evolution of the mean using an eigenvalue method. This study was then extended
position of the vortices may be integrated analytically. De- to periodic or divergent counter-rotating configurations, see
pending upon the circulation rati/ 1 and the separation  Fig. 8, by Fabre, Jacquin and Loof [15] using an optimal
ratio b2/b1, the system may be periodic (the vortices orbit perturbation analysis. Let’s consider first the results obtained
around their vorticity centroids in each half plane), divergent by Fabre and Jacquin [14] for the stationary configuration
(the inner and outer vortex pairs separate), or stationary (thewith 1»/Iy = —0.4, bp/by = 0.14, a1/b1 = 0.1, ap/by =
vortices remain aligned and descend at a constant speed)9.05, a case which was also considered by Rennich and
Fig. 8 shows a classification chart of these configurations, Lele [37] by means of numerical simulation. Fig. 9 sketches
initially displayed by Donaldson and Bilanin [8]. Stationary  the amplification rater of the unstable eigenmodes. Three

configurations are found on the curve of equation unstable branches are obtained. Two of them correspond to
ho\3 I /bo\2 b r symmetrical modes (noted S1, S2), and the third one to an
2 “2(22) 432420 (18) antisymmetrical mode (noted A). In the two-dimensional
b1 I\ b1 by In

case k = 0), bothS; and A modes are unstable, with an
This condition was also derived by Rennich and Lele [37]. amplification rate close te ~ 9F1/(27rb§). The maximum
The stability of the four-vortex configuration was first of amplification is reached on the branch S1 for short
considered by Crouch [5] in the case of co-rotating vortex wavelengthgkb; ~ 7). The branch, labelled; is limited
pairs (1 > 0, I'> > 0) using a Floquet analysis. Fabre and to long wavelengthskb, < 1.2). It is close to the classical
Jacquin [14] then considered the stationary configurations Crow instability that would develop on the outer vortices
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(@)

(b)

(c)

Fig. 10. Instability in a stationary four vortex configuration: (a) Long-wave
symmetric (S1) mode, (b) long-wave antisymmetric (A) mode,
(c) short-wave symmetric (S1) mode. These modes are identified by
circles in Fig. 9 (from [14]).

if they were isolated, with a wavelengiib; ~ 0.8 and an
amplification ratescrow ~ 0.8/ (27b2) (see [4]).

The shape of the symmetric and antisymmetric modes
corresponding t&b, ~ 0.8 are sketched in Fig. 10(a)—(b).
The most amplified mode is that sketched in Fig. 10(c). This
mode appears to be essentially a Crow instability acting
on the inner vortices. This mode leads to a rapid linkage
of these inner vortices and has almost no effect on the
outer ones. A practical conclusion of this work was that
the naturally emerging mode, obtained without forcing of a
long wavelength mode, will be a short wavelength instability
localised on the inner vortices that will not affect the outer
vortices. Fig. 11. Optimal perturbation in a periodic four vortex configuration with

; L I/ = —0.3,by/by = 0.3: (8) X /bg = 0, (b) X /bg = 10, (€)X /bg = 20,
As S.hown by Fabre, Jacquin .and !'OOf [15], Slmllar. (dz)/Xl/b0=30. 'zl'{lelvortice(s )aré gmittec(i z)y/aowing 01E ;p;@()of lift
concluglong hold for l_Jnsteady configurations. An exampl_e IS coefficientC, = 1.5, aspect ratio AR= 7 [15].
shown in Fig. 11 which corresponds to the most amplified
(optimal) perturbation which develops in a four vortex In the case of Fig. 11, ak/bp =30 the optimal growth
system such thak»/I'y = —0.3, by/b1 = 0.3. Considering  is G°P' = 5677. As a comparison, for a single vortex
that the vortices of Fig. 7 are emitted by a wing of span pair with equivalent conditions, the growth rate of the
of lift coefficient C; = 1.5 and aspect ratio AR 7 (which Crow [4] instability is 22, and for the corotating four-
are typical of an aircraft in landing configuration), the vortex configuration considered by Crouch [5] the growth
temporal evolution of the perturbation may be translated rate is close to 10. The wave-number of the perturbation is
into downstream distances (see [15] for further details). k°P%; = 4.55 which gives a wavelengtk®P!/b; ~ 1.38, a
The optimal growthG°P! is defined as the ratio between value smaller than that of the Crow instability. Note that this
the final and initial amplitudes of the optimal perturbation. perturbation is antisymmetrical. This type of perturbation
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has been observed in towing tank experiments, see [36]. 2mb * G
Two-point LDV measurements performed by Jacquin et E r

al. [24] behind a representative aircraft also suggest that 18 F

such a four-vortex interaction could participate to the global 16 F
unsteadiness of the vortices in the extended near-wake field. 14 _

These examples demonstrate that introduction of counter-
rotating vorticity in the wake of an aircraft contributes to
destabilise the wake. However, the non-linear evolution of -
the system after the collapse of the vortices (downstream 08 f

X /bo = 30, considering Fig. 11) remains unknown. 06
04
3.3. Short-wave cooperative instabilities 2 kb
0 TR | N T I N | (R | W] SR——| TR |
3.3.1. Method 0 10 20 30 40 50

As mentioned above, the individual vortices of the wake
are Subjected to a Straining field imposed by the presence offig. 12. Amplification rate of the srjort-wave co-operative instabilities in a
the other vortices. Such a straining field has been described' °f Lamb-Oseen vortices wittyb = 0.2.
in (15) for a counter-rotating vortex pair; it corresponds to

a strain of rate”/ (27 b2) with axes oriented:45° which is Kelvin modes may be involved, such ag =2, mz =0
responsible for the displacement of the two vortex filaments (s€€ [9,35]). _
in the Crow instability mechanism. The amplification ratec = w; of these cooperative

Now, considering the flow within the core, the strain instabilities, as obtained using Moore and Saffman’s method
field amplifies, by stretching, any vorticity perturbations described above, reads
aligned with the strain axis, such as that in Fig. 6(a). This = " 2
mechanism, called Widnall instability, may be quantified = (r/2mb )\/R —[eka —ka)Q]". (21)
by means of a multiple time scale analysis, see [35,50]. This rate corresponds to a narrow band of instability of
Considering the flow evolution on the characteristic length width |ka — k.a| < eR/Q wherek. is the wave number
and time scaleg = a andT = 27 a?/I", the strain amounts  such thatwyi1 , (k.) = 0. The peak of instability is reached

to a perturbation at order= (a/b)2. The assumption for ka = k.a in which cases = RF/ZnEZ. The constant
2 Q and R have to be determined as functions of the actual
&= (i) <1 (19) vortex model. The Rankine vortex was considered by Tsai
and Widnall [50] and Eloy and Le Dizes [11]; the Lamb—

allows an asymptotic approach. Using polar co-ordinates, Oseen vortex was treated by Eloy and Le Dizes [10] and Sipp
the strain field depends on the second harmonic2&p. and Jacquin [42], and the two core scales vortex model given
The total divergence-free basic velocity field in the plane by equation (4) was investigated by Fabre and Jacquin [16].
normal to the vortex axis may then be expressed into the Asan example, Fig. 12 shows the amplification rate of the

form instabilities due to resonance of the straining field with the
helical waves(w, = 0, m = £1, ka ~ 2.26,3.96,5.61...)

U=Uyr)+el (r,0)+--- (20) for a Lamb—Oseen dipole of aspect ratigh = 0.2. The

with results are plotted here versis. The first lobe, close to

; the originkb = 0, corresponds to the Crow instability. The

Uo(r)=(0,r82(r),0)", short-wave instabilities concern wave numbers> 9.

Uy(r)=(fsin2B/R, [ cosD/(2r). O)I' 3.3.2. Results and discussion

The stream-function at ordere is y1(r,0) = The status about the cooperative instabilities is the

—f(rycosd/2. The function f(r) must be determined following:

so that (20) fulfils the steady Euler equations at orger — The amplification rate of these short wave cooperative

see [35]. Considering 3D perturbations, i.e. two Kelvin instabilities in Lamb—Oseen vortices ds= 1.4I" /(27 b?),
waves with azimuthal wave-number; and my, with an see Fig. 12. Itis slightly larger than the amplification rate of
amplitude of the ordes « 1, a resonance occurs at the the Crow instabilityocrow 2~ 0.8I"/(2b?). The time scales
order is, presumablyj.e. The mechanism described with t of the two instabilities are thus equivalent and of the order
this method is a global resonant interaction between threeO(275%/I").

steady perturbations, i.e. two Kelvin waves and the strain, — Compared with the viscous time scaleo a?/v, we
which takes place as soon as the triadic resonance relatiorhaver, /t « (a/b)?Re. Therefore, if we assume thath =
m1—mp = 2 is satisfied. For the Lamb—Oseen vortex, itonly 0O(0.1), for Re>> 100, the cooperative instabilities are free
occurs formy = 1, mp = —1. In the Rankine vortex other  from viscous damping.
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Lamb - Oseen "plateau” "two core scales”

~ estingly, the wavelength and the width of the instability band
a=02b Vo . L
, are extremely sensitive to the valuecfvithin the range of
Ve values observed in the experiments, see Section 2. This topic
was recently explored by Fabre and Jacquin [16].

— - — An interesting theoretical result is that obtained by
n=0025 r,=02b r =002br,=02b Sipp [41] using a weakly non-linear analysis of the Widnall
27h 2 instabilities of a strained Lamb—Oseen vortex. The result

T a=05 is that short-wave instabilities saturate very quickly. The
a=0.45 X/ =055 mechanism responsible for this saturation is a sudden self-
? 0=04 v induced rotation of the plane waves that occurs when their
8 { ” amplitude becomes large. Detailed results show that the

0

maximum vortex core distortion induced by the Widnall
instability is then limited to values smaller thad@b before
ﬂ non-linear interaction occurs, see [41].

In conclusion, the above results suggest that, in represen-
tative vortex wakes, the short-wave cooperative instabilities
are likely confined in the very centre region of the vortex
cores and that they cannot lead to significant core distortions
before they saturate. Short-wave instabilities are unimpor-
oot L, tant as far as a counter-rotating vortex pair separated by a

25 50 75 100 distanceb is concerned, i.e. in the far-field wake. But things
Fig. 13. Amplification rate of the first Widnall instability in pairs of vortices b‘?come different in the near-field where, as Sh_OWh by L.e
corresponding to different models: Lamb-Oseefb(= 0.2), “plateau” and Dizes and Laporte [28], the short-wave cooperative instabil-
“two core scales”, withr1 /b = 0.02, rp/b = 0.2. For the two core scales  ities play an important role in the merging mechanism of

model which is defined by Eq. (4), different values of the expoaehave co-rotating vortices.
been considered.

0.8

0.6

0.4

0.2

0

— Dependence of cooperative instabilities on the vortex 3-4- Instabilities due to axial flow
model is a question of importance. Only small differences ) o )
are found when comparing two models based on a single 10 complete our review on basm_ I_n_"near mechanlsm_s, we
scale, such as the Rankine vortex and the Lamb—Oseerinentionthatanother class of instabilities may develop in the
vortex for instance: the most amplified wave numberand presence of core axial flow in the vortices. These instabilities
the amplification rates are comparable. The main difference have been extensively studied for the model flow known as
is that in Lamb—Oseen vortices the presence of critical layersthe ¢-vortex [1,33]. This model corresponds to a Gaussian
leads to the suppression of some resonances, such as the oni& superimposed to a Lamb-Oseen vortex, i.e.
with m1=0,m2 =2 (see [42]). - _ _ 2

— Things become different when considering more repre- Uin=e", Vo) =q/r(1—e™).
sentative models such as the one introduced in Fig. 4. Fig. 13Three families of instabilities can be distinguished. The first
shows the first amplification lobes of the short wave insta- ones are basically inviscid, and occur fgr< 1.5. These
bilities obtained when considering three simplified vortex instabilities are well described by the asymptotic study of
models. The first one is the Lamb—Oseen vortex pair, suchLeibovich and Stewartson [30], which predicts that they
thata/b = 0.2, the second one is a “plateau” vortex pair take the form of ring-modes, with a structure concentrated

with a constant tangential velocity region fronyb = 0.02 in an annular region located around the core. Jacquin and
to r/b = 0.2 and the third is a vortex pair corresponding to Pantano [25] recently observed the development of these
the model (4), with internal radiug /b = 0.02, external ra- instabilities in a Direct Numerical Simulation of¢gavortex

diusro/b = 0.2 and several values of In accordance with ~ with an initial swirl numberg = 1. They showed that
Fig. 12, the short-wave instabilities in the Lamb—Oseen di- the development of these instabilities initially leads to the
pole starts arounkb ~ 12. Compared to this reference case, development of a fine-scale turbulence. However due to the
it is found that more realistic models lead to a shift towards stabilising effect of rotation this turbulence is unable to
smaller wavelengths of the instability lobes. The “plateau” survive, and the vortex progressively turns back to a laminar
model leads to occurrence of the first Widnall instability at state with a swirl number larger than 1.5.

a slightly higher wave-numbekk ~ 20). In the case of two The second family of instabilities are the viscous modes
core scale vortices, the higherthe smaller are the unstable evidenced by Khorrami [27]. These modes occur §ok
wavelengths. For instance, usiag= 0.5, it is found that the 1.2, and their growth rates are several orders of magnitude
first short-wave cooperative instabilitylish ~ 85. Introduc- smaller than those of the inviscid modes occurring in this
ing the radius, one has.r1 ~ 1.7 which means that the range. Consequently, they are unlikely to play any role in
instability scales with the inner core radius. Note that, inter- the dynamics of vortex wakes.
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Finally, the third family of instabilities are the viscous boundary layer, Lin and Malik [32], who exploited the sym-
centre-modes recently described by Fabre and Jacquin [17]metries of that problem to reduce the computing effort, that
These modes exist for very large Reynolds numbers, andof Theofilis [46,49] who solved (24) for the same configu-
for swirl number much larger than the other families of ration without resort to symmetries, as well as the analyses
instabilities. So, they could be present in trailing vortices in of Theofilis [45,48] in open and lid-driven cavity flows and
the far wake. The significance of these kinds of instabilities that of Theofilis et al. [48] in boundary layer-flow which en-
in realistic aircraft wakes should be clarified by future compasses a closed recirculation bubble. Compared with the

numerical or experimental studies. latter applications, in which a matrix eigenvalue problem of
leading dimension in excess of 4®as solved using state-
3.5. Biglobal instability analysis of-the-art numerical algorithms for the discretisation of (24)

and efficient algorithms for the eigenspectrum, the wake-

The analysis of long- and short-wave perturbations con- vortex system presents the additional challenge of yet higher
ducted above can be merged using a more general approachgsolution being necessary for the adequate description of
by relaxing the assumptions (17) and (19). Any flow quantity the wake-vortex system basic flow itself and, consequently,

g = u,v,w, p)T is again considered as the sought global instabilities.

- _ - One simplification which halves the storage requirements
gy, 2,0 =4(y,2) +8q(x,y, z,1), (22) for the solution of (24) that are typically of the order
with a small-amplitude perturbation of ordeand form of several gigabytes, is the case in which the basic flow
_ R (kx—oot) velocity component is absent in the wake-vortex system.
qx,y,2,0=4(y, )€ +cc (23) In conjunction of the definitions = iw, W = iw, this
wherew, = Re{w)} is related with the frequency of a biglobal ~ simplification results in aeal partial-derivative eigenvalue
eigenmodej while the imaginary partw; = Im{w} is its problem enabling storage of real arrays alone, as opposed

growth/damping rate. The objective of the analysis is still t0 the complex arrays appearing in (24). Freeing half of
the identification of unstable eigenvaluesand associated the necessary storage results in the ability to address flow
eigen-vector amplitude functions for a given basic state  instability at substantially higher resolutions and/or higher
g describing the wake-vortex system. The system for the Reynolds numbers compared with an analysis based on
determination ofw and the associated eigen-functiofis ~ Solution of (24). However, from a physical point of view,
in its most general form can be written as the complex Neglecting the axial velocity componemin the basic flow
nonsymmetric generalised eigenvalue problem [47] restricts the classes of flows that can be addressed by a global
instability analysis. With this consideration in mind, the

ikit + Dy + D0 =0, potentiality of the method will be illustrated by considering

Li — (Dyit)o — (D i))w — ikp = —iwi, the case of a system composed of Batchelor-like vortices,
[L — (Dyﬁ)]f) — (D) — Dyp = —iwd, (24) each of which is characterised by
—(Dy@)d + [L — (D) ]| — D, p = —iwb, i(y,2)=e"’,

where the linear operator is i(y,z) =g cosd(1— e*rz)/rZ, (27)

L= (1/Re)(=k?+ D2+ D?) —ikii — 9D, —D;  (25) B(y.2)=qsind(1—e"")/r2,

and D, = 9/dy, D, = 0/0z, D? = 0?/9y?.... Significant  wherer = /(y — yn)2+ (z — 2n)2/an, (yn. 22) denotes the
comments regarding the global instability analysis are, centre andu, the radius of vortex:. Here the centreline
first, that the two-dimensional eigenvalue problem (24) axial velocity of the vortices has been taken equal to unity.
permits considering wake-vortex systems having a velocity In constructing a basic flow composed of several such

component: in the direction of the aircraft motion, in vortices satisfying (27), the additional freedom exists in the
addition to those defined on th@yz plane,v and w; the choice of the relative circulation, radius and location of the
only assumptions of the analysis are vortices. The basic flow analysed here was constructed along
83/01 =97/3x =0 (26) the lines of those discussed in Section 3.2. It consists of

two pairs of co-/counter-rotating vortices. A first case was
the first of which may be relaxed in case of a time-periodic constructed by taking; = 1 andg, = —0.5 and assuming
basic state by employing Floguet theory [3,22]. It should a stationary configuration fixed by the Rennich and Lele
also be noted here that solution of one of the alternative condition (18). The first vortex was placed at the outmost
simplified forms of the partial derivative eigenvalue prob- starboard locatiofx1, y1) = (7, 0), lengths being made non-
lem (24) valid in the case of a single velocity component dimensional using the radius parameter of the outer vortices.
[44] or, additionally, in the inviscid limit [20], is not permis-  The radii were chosen consistently with the definition (27),
sible in the wake-vortex stability problem. a1 =1, ap = 0.5. The Rennich-Lele condition delivers the

Successful applications of biglobal instability analysis location of the second vortego, y2) = (0,1.27) in this

based on (24) are the studies of the swept attachment-linecase. The locations and swirl of these two vortices were
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Fig. 14. Vertical velocityw(y, z) of the basic flow considered: (gh > 0
(co-rotating), (b)y2 < O (contra-rotating).

mirrored with respect to the centreline= 0 to construct
the fields which are illustrated in Fig. 14(a) through the
distribution of the vertical velocityv(y, z). A second case
was constructed using the same vortex locationsgane 1,
g2 = 0.5 (Fig. 14(b)). Such a configuration is not stationary.
A Reynolds number can be defined ag Reg1/v. The
biglobal instability analysis was performed at;Re 10° and
several axial periodicity wave-numbeis of which results
at a short wave numbek, = 2/3 i.e. Ly = 27 /k ~ 9.4,

presented, using different grids, 386° or 64 Legendre

consideredz € [—10,10] x y € [—5,5]. Accordingly, the
Krylov subspace dimension was increased franx= 200
at the lowest- tom = 400 at the highest-resolution runs.

The resulting memory requirements for the recovery of the

vectors at a single pair of the paramet@®s, k) ranged from

of the eigenspectrum in the neighbourhood®f, w;) = 0.
We present results of the two casgg> > 0 andgig2 <0
in order to facilitate qualitative and quantitative compar- comparable with the spacing of the outer vortices, and is an
isons. The symmetry of the basic flow suggests that eitherorder of magnitude smaller than that of Crow instability. Re-

stationary or complex conjugate pairs of eigenmodes are tosults of comparisons with earlier works have been obtained
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Fig. 15. Global eigenspectra at Rel03, k = 2/3:(a)g2 > 0 (co-rotating),
(b) g2 < 0 (contra-rotating). The symbols correspond to different resolu-

tions (see text).

be found in the spectrum. Indeed, this result can be seen in
Fig. 15 in which the parts of the eigenspectrarecovered at the
two highest resolutions utilised, 5@nd 64 are presented.
are indicated. Homogeneous Dirichlet boundary conditions Interesting observations are the following. First, at these pa-
have been imposed on all disturbance velocity componentsrameters the biglobal instability of the flogag2 > 0 can
at the far-field and a compatibility condition was used on the be resolved more easily in comparison with that in which
disturbance pressure at the boundaries. A resolution analy-gig2 < 0. The lower resolution suffices to deliver several
sis study was performed to ensure integrity of the results converged eigenvalues in the first case, while the higher res-
olution appears sufficient only for qualitative statements to
collocation points to resolve the two-dimensional domain be made in the second case. In both cases the most unsta-
ble mode is a stationary disturbance, iug = 0. The spatial
structure of which may be found in Fig. 16 through eigen-
functionsp(y, z).
The key statement here is that the destabilisation of the
most interesting window of leading eigenvalues and eigen- model wake-vortex system can be adequately described by
numerical means, using biglobal linear theory. Depending
300 Mbytes to 4.5 Gbytes and the corresponding runtime on the relative sign of the swirl parameters of the outer and
from 1.5 to 65 mins at 3.5 Gflops on a supercomputer. In all inner pairs of vortices in the example presend@tier vor-
runs a shift parameter = 0 was used, ensuring resolution

tex pair system may be destabilisadd eventually lose its
coherence on account of the linear mechanism discussed.
In both occasions the periodicity length of instabilify, is
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Fig. 17. Downstream evolution of the peak value of the turbulence rate
Vk/ Vs measured with a 3D-LDV system in the centre of the wing tip
vortex of a A300 model in the high lift and clean configurations (in the high
lift case, merging with the flap vortex occurs arount = 2; from [24]).

—— production could come from the development of long-wave
oo oG om oo 66 6% cor oo 003 and short wave cooperative instabilities.

Fig. 16. Spatial structure of the most unstable global eigenmoges:z)|:

(a) g2 > 0 (co-rotating), (bly2 < 0 (contra-rotating). 4.2. Hotwire measurements

. - ) . The perturbations characterised above do not correspond
and presented by Hein and Theofilis [21]. Here it suffices t0 4 4 equilibrium turbulence but are characteristic of a global

stress that global instability theory based on numerical so- “meandering” of the vortices. This effect is clearly evi-

lution of (24) emerges as one viable alternative to assist the yenced by considering the spectral contains of the perturba-
current efforts to minimise the coherence of the wake-vortex s Fig. 18 shows the energy density of the axial compo-

system, which delivers results of the quality of direct numer- naont of the velocity measured using a standard single wire
ical simulations at a negligible fraction of the cost of the lat- pisq P11 probe placed in the centre of the high lift and
ter approach, while retaining the generality that is necessaryciean configuration vortices at/b = 5. Some characteris-
to address realistic aircraft wake configurations. tic slopes are indicated. It is seen that the vortex meander-
ing corresponds to a broadband spectrum which exhibits a
sharp energy excess for frequencies smaller than, let’'s say
4. Experimental characterizationsof unsteadiness f < 1000 Hz (red curves). Searching for possible relation-
ships with instabilities leads to identification of energy over-
In this section we come back to experimental results shoots in the spectra. In the high lift wake vortex system,
and focus on the unsteady properties of aircraft wakes. Thethree energy accumulations may be identified (see arrows
results are then discussed in the |Ight of theoretical results. in F|g 18) They are located at, approximatq[’w 15 Hz,
55 Hz and 400 Hz. These energy peaks are not found in
4.1. LDV measurements the clean case shown in Fig. 18(b), except an energy bump
around the first of these frequencies. Itis also very clear from
It is usually found that the energy of the velocity pertur- these figures that the small scales of the clean case vortex are
bations within a vortex reaches its maximum in the vortex much less energetic than in the high lift case.
centre. Fig. 17 shows the variation with the downstream dis-  Thus, one may wonder if these features are related
tance of the peak turbulence raté/V,, measured with  to linear mechanisms. Some answers were proposed by
a 3D-LDV system in the centre of the wing tip vortex of Jacquin et al. [24]. They are summed-up below with some
the A300 model presented in Section 2. It is observed that additional remarks that can be made in the light of the new
the turbulent kinetic energy first decays and then remains theoretical results presented in Fig. 13 concerning short-
almost constant beyond 3 spans. In the high lift case, thewave instabilities.

merger takes place at/b ~ 2. The damping of the energy — As seen in Section 3.2, the theoretical wavelength for
decrease beyond this distance shows existence of a mechahe Crow instability which may develop in a dipole or in a
nism that produces perturbations. If nofk/ Vs, would de- four-vortex arrangement isb ~ 0.8 which means.crow ~

crease monotonously under diffusion and dissipation. This 8b. At x/b =5, one has ~ 340 mm which givesfcrow =
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@ long-wave instabilities takes place on a characteristic dis-
0 e N tancex = V4 /o. Using an elliptic model for evaluating
!, l I" andb (see Section 2), the characteristic distances corre-
ot I /_J\% I sponding to are! ampllflcatlo_n of_the Crow instability is
g 1w found to bex /b ~ 30 in the high lift case; ~ 1.7) and
r 43 x/b~ 70 in the clean cas&’( ~ 0.7). These distances be-
10° E come ten times smaller if a four vortex system is considered.
B In conclusion, only the very first stages of the development
i | . of the Crow instability can be felt at/b = 5. But the vor-
\ tices are very concentrated and slight vortex displacements

C may generate strong fluctuations on a fixed hot wire probe.
10° \ So, the first energy peak observed in the spectrum in Fig. 18
C \-3 may possibly be attributed to the early stages of a long-wave
£(#2) cooperative instability.
N — The short-wave instabilities are considered now. In the
. : = = kb clean case, we saw that a Betz-like vortex with~ 0.55
fits correctly the velocity profile of the clean case vortex
(b) at x/b =5, see Fig. 3(b). In this case, from Fig. 13 it is
found that the first short-wave cooperative instability occurs
() aroundk.b ~ 95 that is f,. ~ 2200 Hz usings> = 340 mm.
10" In Fig. 18(b), such high frequencies correspond to very low
levels of energy compared with those of the low frequency
- l part. The conclusion is that, as suggested by theory, short
‘“\,M\ wave instability contributions are almost undetectable in the
-5/3
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10° 10’ 10? 10° 10°
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clean case.

10° \ — Things are different in the high lift case. First, the

presence of a plateau region shown in Fig. 2 leaves room for
k- occurrence of short-wave instabilities at smaller frequencies
% than in the clean case, as suggested by Fig. 13. The third

T T 7T

TTTTTI]

energy peak found gt = 400 Hz in Fig. 18(a) corresponds
\ to a wavelength. ~ 0.125 m, givingkb ~ 17, which is not

incompatible with the tendencies depicted by the plateau
model in Fig. 13. The much higher energy contained in
these intermediate frequencies in Fig. 18(a) compared with
Fig. 18(b) does suggest that short wave instabilities could be
107 bl ol f(Hz) more active there. This effect is also illustrated in Fig. 19
| | 10° 1 Ll which shows the produgt x S, (f) obtained when the hot

0.1 1 10 100 kb wire is moved along a vertical line crossing the vortex core
Fig. 18. Spectral densities of the axial component of velocity measured up to Its centre. Each curve CorreSponds oa displacement
wi?h a hot-SVire probe in the center of the vorrt)ex)@% =5.(a Izgh lift of Az =1 mm. Integral under these curves corresponds to

case, (b) clean case. The grey and black curves correspond to 20 kHz anothe Slgnal energy. It _'S _Seen that e_ne_rgy O_f the perturbatlons
2 kHz sampling, respectively. Arrows indicate the location of energy peaks Undergoes a dramatic increase within a distance of 1-2 mm
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(from [24]). when approaching the vortex axis. The energy increase
essentially comes from short-wave contributions.
Voo/Acrow ~ 18 Hz, a value close to 15 Hz. Consequently, — Note finally that neutral Kelvin waves, initiated by per-

the peak located around ~ 15 Hz may correspond to turbations emanating from the model (turbulence, separa-
the emergence of a long-wave cooperative instability of tions, etc.) and propagating downstream along the vortex,
this type. The “signature” of a four vortex instability was see Section 3.1, may also contribute to the broadband spec-
detected in two-point correlations measured in the high lift tra shown in both Figs. 18(a) and (b). Viscous instabilities of
case, see [24]. Such a four vortex instability could contribute the kind considered by Fabre and Jacquin [17] and presented
to differences in the low frequency energy in Figs. 18(a) in Section 3.4 may also be present.
and 18(b).

— The amplification rate of the Crow instabilitydg ow ~ 4.3. PIV measurements
0.8I'/(2b?). As seen in Section 3.2, it may reach a value
ten times higher when co-operation with an inner counter-  PIV measurements enable us to characterise vortex un-
rotating vortex pair is accounted for. Development of such steadiness in a different way. One considers here the wake
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Fig. 19. Lin-log plot of f x S, (f) obtained by translation of the hot wire

in the vortex of the high lift case at/b = 5, along a vertical line crossing

the vortex core. The grey and black curves correspond to 20 kHz and 2 kHz
sampling, respectively. The highest energy is obtained on the vortex axis.
Each curve corresponds to a displacementof= 1 mm with respect to

the vortex axis.

generated by a 1:13.6 A320 half-model with a semi-span
equal to 1.25 m. The experiment was conducted in DNW-
LLF. For three different configurations of the wing, sam-
ples of one to two hundred particle images were taken and
the vector fields evaluated. Besides some exceptions which
showed three vortices, the topology of the field in the frame Fig. 20. (a) The velocity field with two vortices generated by flap and
of reference of the camera was formed by two vortices in tip of a model wing is approximated by spperposing .the velocity fields
each half plane, as shown in Fig. 20. In order to estimate °f W0 Lamb-Oseen vortices, (b) comparison of vertical component of

L. . L velocity in cuts through the approximated vortices (dashed lines) given in
the position and strength of the vortices, the velocity field figure (a) PIV data in solid lines. Circles represent location and radius of
was approximated by two Lamb—Oseen vortices. The distri- Lamb-Oseen vortices.
butions of circulation™ and radiug:, cf. Eq. (5), were inves-
tigated. The mean value and the standard deviation of both

" . . . Table 1

qu"?mtlt_les a_re given in _Table 1_‘ Tho“gh this overlay Of_ ve- Mean values and standard deviati@rof approximations of velocity fields
locity fields is not consistent with Navier—Stokes equations py two Lamb-Oseen vortices for different configurations of a half model
the approximation is acceptable as shown in Fig. 20(b), see

. o - I I ay a
also [5}]. In Fig. 21, varlat_lon of_the vortex centre points for (m2s~1 (m2s~1) (m) m)
three different model configurations have been plotted. Both ~ .-~ o6
the vortex displacements depicted in Fig. 21 and the varia- mean 123 51 0.0501 00251
tions in the model parameters in Table 1 define measures of o 0.32 0258 Q00197 000245
the unsteadiness of the vortices. o/Mean 26% 51% 39% 97%
Fig. 21 gives an indication about meandering amplitude Case m04
whose typical value is found to b&~ 0.05 m, that is Mean 11038 5&‘7311 %83%"9 383‘8‘29
~ . . . . o .
8/b ~_0.02. This value is much higher t_han those WhICh o /Mean 104% 127% 156% 25206
were inferred from LDV measurements in the experiment
resented above. It is seen that the flap vortex is subjected to-25¢ ™%
P o at e flap i J Mean 104 56 0.0506 00352
larger excursions than the wing tip and that its movements 1.00 102 000737 00136
admit a preferential orientation which suggests a cooperative o/Mean 96% 181% 145% 386%

instability. This result could confirm that multi-polar wakes
are much more unstable than dipolar ones. From Fig. 21, it
can be also inferred than the “blue” and “green” model plan-
forms produce more unsteady wakes than the “red” one. At which are reported in Table 1 show that the configuration
last, the fluctuations of circulation and vortex core radius correspondingto case m05 is more unsteady than the others.
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Fig. 21. Distribution of center points from the approximation by two

Lamb-Oseen vortices. The different colors refer to different configurations
of the same model (95 samples in blue, 298 in green, 100 in red). The

different rectangles refer to the same region of the flow. The clusters on
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been made to identify the contribution of the linear mech-
anisms presented above to the meandering. Hot wire mea-
surements reveal the existence of a few peaks emerging from
the broadband level in the energy spectra, which could be
explained by the presence of long-wave or short-wave coop-
erative instabilities. Some results also indicate the existence
of a four-vortex interaction. However, the wind tunnel mea-
surements presented here are limited to the near-field wake
(up to nine wing spans downstream of the aircraft). This dis-
tance is not sufficient to identify clearly these instabilities
and to discriminate them from other mechanisms contribut-
ing to meandering, such as the propagation of Kelvin waves.
In order to observe the development of instabilities at farther
distances, other experimental facilities have to be employed,
such as a catapult or a towing tank.

the left and right hand sides correspond respectively to the wing tip and flap Acknowledgements

tip vortices.
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