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Elliptic instability in two-dimensional flattened Taylor—Green vortices

D. Sipp and L. Jacquin
ONERA, 29, Avenue de la Division Leclerc, BP 72, F-92322,
Chaillon Cedex, France

(Received 13 August 1997; accepted 19 December)1997

The aim of the present paper is to study three-dimensional elliptic instability in two-dimensional
flattened Taylor—Green vortices, which constitutes a model problem for the topics of wake vortex
dynamics. Shortwave asymptotics and classical linear stability theory are developed. Both
approaches show that the flow is unstable. In particular, the structure of the most amplified growing
mode is the same as that obtained in unbounded elliptical flows. The limits of the linear regime and
the effects of the nonlinear interactions are characterized by means of a spectral Direct Numerical
Simulation(DNS). © 1998 American Institute of Physids$$1070-663(98)02404-(

I. INTRODUCTION Fig. 1, corresponds to an infinite array of counter-rotating
vortices. There are elliptic and hyperbolic stagnation points.

e : _ : For example, atx=d,/4, y=d,/4), the flow is locally ellip-
geneous elliptic flows is now well understobd.Extensions jcal: Uy=—(y+e€)y, Uy=+(y— e)x with y=A/2 and e

to nonhomogeneous cases, where the flow is only locall O :

elliptical and where there may be boundary conditions, are:A(bs_bi)/z(bf’eri)' The  local — ellipticity is E

not straightforward—we make a distinction between homo-=V(7+ €)/(y—€)=d,/dy, which is also the aspect ratio of

geneous basic flows which are unbounded with a unifornthe cells. The flow is locally hyperbolic ak=0, y=0):

velocity gradient tensor and nonhomogeneous basic flowsx=+ &%, Uy=—dy with 5=Ab,b, /(b +bJ).

which can be bounded, like a flow in an elliptical cylinder, or  Itis known, from shortwave asymptotiéshat both stag-

unbounded. nation points are unstable. Therefore, we expect elliptic and
However, linear stability results exist for such flows. hyperbolic instabilities. Thus care is needed since we are

Stability analyses of a Rankine or a Lamb vortex in an exrying to study only elliptic instability.

ternally imposed plane strain field have already been Lundgren and Mansotihave performed a DNS of flat-

achieved'® The mechanism of instability involved is a tri- tened 2-D Taylor—Green vortices and Bal}’ gave some

adic resonance between two kelvin waves of the same frd€sults on the linear stability with respect to short wavelength

guency and strain field. The same phenomenology occurs iRerturbations. In the present paper, the linear properties of

a bounded elliptic cylindef.The linear amplification rate is this flow will be investigated with shortwave asymptotics

found to be nearly the same as in the homogeneous case. (®ec. Il A and by applying the usual 3-D viscous linear sta-

fact, it has been showrthat the superposition of unstable bility analysis (Sec. Il B. Then the nonlinear evolution of

unbounded Fourier modes leads to a growing inertial modéhe growing mode will be studied by means of a Direct Nu-

that satisfies the boundary conditions in an elliptic cylinder.merical SimulationDNS) (Sec. Il)).

So, in this particular case, a strict analogy exists between the

homogeneous and the nonhomogeneous cases. Il. LINEAR STABILITY ANALYSIS

A recently developed theory by Lifschiz}® the so- In this section, we neglect the slow viscous decay of the
called shortwave asymptotics, enables a generalization of th?aylor—Green flow by considerind\(t) as constant and
homogeneous flow theory to nonhomogeneous flows. Ipqya to 2.5. This assumes that the decay rate of the mean
shows that elliptic stagnation points are always unstable with,\ is slow compared to the growth rate of the instability.
respect to short wavelength instabilities, no matter which 1o following cases have been considered:
type of flow surrounds them.

This paper is devoted to another example of nonhomotl) E=1 with d,=1, dy=1, where the elliptic points are
geneous flow subjected to an elliptic instability, the two- ~ Nnow solid rotation points which are stable according to

The three-dimensiondB-D) elliptic instability in homo-

dimensional(2-D) Taylor—Green vortices, which is actually shortwave asymptotics; o
a solution of the viscous Navier—Stokes equations. It is det2) E=2 withd,=2, d,=1, where unstable elliptic and hy-
fined by the following stream function: perbolic points coexist in the flow.
_ A(t)sin byx sin byy A. Shortwave asymptotics
b+by 1. General equations
with A(t)=A, exp(— v(b)2(+b§)t). The wave numberb, and Shortwave asymptotics were developed and applied by

b, are related to the periodicitie, andd, :b,=2=/d, and Lifschitz and Hameiri. In this section we review the basic
by=2m/d,. This flow, whose streamlines are represented irtheory. The reader is referred to Refs. 8-10 in which the
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d, These equations can be thought of as an extension of
rapid distortion theory (RDT)*’"'° to nonhomogeneous
flows. Although these equations seem similar, shortwave as-
ymptotics is a different theory. In particulak, and a have
different meanings in the two theories. It should be noted
that the sufficient criterion of instability given above is not
dy valid in RDT. Contrary to shortwave asymptotics, one has to
integrate ovek to obtain the perturbation energy, which can
decay, although some Fourier modggoically a set of mea-
[ = = — — sure zero irk space have growing amplitude?.
-1 -0.5 0 05 1 We restrict our analysis to the streamlines belonging to
X the cell (Os=x=d,/2, Osy=d,/2). This cell contains one
FIG. 1. Streamlines of 2-D Taylor-Green vortices. Cdse 2, d,=1,E  elliptic point at (x=d,/4, y=d,/4) and four hyperbolic
=2. points at(x=0, y=0), (x=0, y=d,/2), (x=d,/2, y=0),
and x=d,/2, y=d,/2). Note that all streamlines are closed
except those bounding the cells. The origin of all these

closed streamlines is taken agt=0)=(x’,d,/4,0) where

whole theory is thoroughly explained and applied. This ; : ) )
theory is now currently used in hydrodynamic stability stud—_‘lj_xl)f'gx <d,/2. The corresponding time period is denoted

ies of various flowg#-1¢ -
The steady basic flow(x) is perturbed by the following
velocity field: . ) ) )
2. Floquet analysis for the differential equation
u(xt)=a(x,tyexdin~ tp(x,t)], governing k (1)
where 7 is a small parameter. Introducing(x) +u(x,t) in For the case of closed streamlines, the matrix

the inviscid incompressible Navier—Stokes equations and- #T[X(t)] is periodic in time which means that the first-
linearizing around the basic floW(x), we get the following  order linear-differential equation for the wave vedkét) (2)

equation at lowest order in: can be analyzed with Floquet theory. One looks for the
(8,+U-V) =0, eigenyalues/eigenvector; gf the matrix[T(x')] where
J7(t) is a matrix that satisfies

which means that the phase field is passively advected.

The next-lowest-order terms yield the evolution equation %: — STX)H
for the velocity envelope function: dt B ’
T and
ht+U-Vya=| 7m—7| %8,
(% 2= e H(0)=7.

wherek=V ¢, ¢ is the velocity gradient tensor7 is the  with the flow being 2-D, it is readily seen that
identity tensor, and the superscriptdenotes the transpose. 77, [T(x')]=.%3] T(x')]=0 and thafa=1, k(0)=¢,] is
Lifschitz proved that the flow is unstable if this system of 5 trivial eigenvalue/eigenvector, which means that
perturbation equations has any solutions whose amplitud,gfgliT(x')]:,7({23[1'()(/)]:0 and 75 T(x')]=1. Also,
increases unboundedly &s»c°. for a steady flowd/dt[k-U(X)]=0 along each streamline;
This system evolves locally along particle trajectories,hencek(t)-U[X(t)]=cte. SinceU(t=0) is parallel tog, ,
which means that it can be written in Lagrangian form. Thusthis implies that %, T(x')]=0 and. %, T(x’)]=1. The
one considers a rapidly oscillating localized perturbationtrace of the matrix— %7 being null, the determinant of
evolving along the trajector)X(t) and characterized by a %[T(x’)] is unity which implies that?Z ;][ T(x')]=1. The
wave vectork(t) and a velocity envelope(t). For a steady matrix % [T(x’)] therefore reads
flow, these quantities are governed by the following set of

equations: 1 Zx') 0
dX i . H[T(x)]=| 0 1 0
TR () 0 0 1

K The component7,(x’) must be calculated numerically

— = — ZT(X)k, (2)  along each streamline. The results are shown in Fig. 2 for the
dt caseE=2. A similar result is obtained for the cage=1.
da /2KkkT In the vortex centerx’ —d,/4), where the flow is lo-
qi W—J) Z(X)a. €©)] cally homogeneousin this case.’Z;,=0), the component

T1(x") vanishes.

A sufficient criterion for instability is that this system has at But, the more streamlines become distorted, the more
least one solution for which the amplitudét) unboundedly .7Z%(x’) grows. This means that k(0)-e,#0 the wave
increases at— oo, vectork(t) will grow indefinitely. One may expect that the
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FIG. 2. Values of Z'1,(x") for the caseE=2, d,=2, d,=1.
FIG. 3. Values of largest Floquet exponent in the (x’,6) plane. Case

E=2,d,=2,d,=1.

wavy-perturbation dies out because of viscosity. Therefore,

only the casek(0)-e,=0 is considered. Furthermore, the

differential equation fom(t) (3) is independent of the wave €igenvalues—the previous analysis fails. In a convenient

number|k|. Consequently, the initial wave vectk¢0) only ~ normed basis, the matrix/[ T(x’)] can be put in a Jordan

depends on the colatitudék(0)=sin(6)e,+cos@)e,. Be-  form:

sides, the first-order linear differential equation &ft) (3) @ A O

can be analyzed with Floquet theory sirdg) is periodic. 0 0
M )

0 0 1

3. Floquet analysis for the differential equation

governing a (t) whereu=*1. The flow is always unstable but the growth

L ) . __rate is algebraici\|/T(x') per period. Those cases will not

The same ar_1aIyS|s is now applied ]‘or the d|fferer_1t|albe considered since we focus on exponentially growing in-

e‘?“a“o,” governln/ga(t) (.3).' We consider the matrix stabilities; therefore we will only need to compute the two

A T(x")], where_#(t) satisfies Floquet exponentsa®,o?). Hence, the flow is exponentially

d.Z |[2kk" ] ) unstable ifar1> 0. Finally, the colatitude anglé of the wave
W:(W_y) Z(X).A vector att=0 is taken in the interval0,7/2] since the ei-
genvalues of Z[T(x')] are invariant with respect to the
and transformation®)— — @ and §— 7— 6.
A0)=7. The caseE=1 reveals that the closed streamlines are

. ) . , s exponentially stable for all colatitude angléf the initial
A trivial eigenvalue/eigenvector of [ T(x')] is [#=1, \yaye vectork(0) (we actually hope that we did not miss a
a(0)=¢,]. Because the determinant of/[T(x')] IS  narow instability band since all cases are not studied but
unity—it can beTverlleed that the average over one period ofy|y 4 finite number of theinbut the flow is actually alge-
the trace of (Rk'/[k|*~.7) Z(X) is zero—the two remain-  p4ically unstable since for colatitudés=0, /2 the matrix
ing complex eigenvaluesu(, u?) where |ul|=|u? must _/[T(x')] is not diagonalizable.
multiply to 1:%u?=1; hence they are either complex con-" "~ o the other hand, closed streamlines for the dase
jugates of unit modulus or real and reciprocals. The system.  5re ynstable. The results are given in Fig. 3. In the center
verifiesd(k;. 7;)/dt=0, which proves that if x,a(0)] is an ot the yortex, all the results, i.e., the amplification rate and
eigenvalue/eigenvector of [ T(x")], then [&(0)-k(0)]  the instability band of Bayly's homogeneous case when
X (1= un)=0. This means that the two possible remainingEZZ are recovered. As shown in Fig. 4, where the maxi-
eigenvectors are orthogopal kQ0). This result is consistent |\ values of, are plotted versug’, the amplification
with shortwave_ asymptqtlcg. . . o rate decreases as increases: The streamlines do not un-
If the matrix. 2[T(x')] is diagonalizable—a sufficient  yorq4 exponential hyperbolic instability although the local-

o i 2
but not necessary condition for this is that*(u*1) are all ;64 perturbation regularly goes through a hyperbolic region.
distinct—, the corresponding complex Floquet exponents

(cr=cl+1ol, o?=0?+10?), defined as gl=e” T®),
u2=eT6") and therefore verifyingr'=o? and o+ o2
=0, enable us to conclude: i#1>0 the streamline is un-
stable with respect to short wave asymptotics andf 0, it Particles on streamlines that are not closed converge to-
is stable. ward the hyperbolic stagnation points. Thus, one only needs

When the matrix is not diagonalizable—a necessary buto study these four particular points. Considering for instance
not sufficient condition for this is that equality arises amongthe streamlineX(t)=X(0)=(0,0,0), one gets

4. Open cell-bounding streamlines
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ka 0,=—1P,sNg, 4
0.3 where
v 0.2 Kok

Pap=0ap= 77

01 Nﬁ=2I 0y(hk, 0, (k—1).

85068 07 .08 03 1 IntroducingU(k) + (k) and linearizing around the basic
X flow, we get the following linear problem:
FIG. 4. Maximum values ofr! vs the streamline parametgf. CaseE

- - - ﬁu
=2,d,=2,d,=1. — Y K2 +2 D1k, 0 (k=1)
Abyb, + 2—2—k“kﬁ—5 Ik U (13 (k=1 (5)
_B2+_bz 0 0 k ap YT B -
x T My
— ZT(X)= Ab by _ Because the basic flow is two dimensional, we can restrict
0 b2+b2 0 our study top=1 without loss of generality. Now, the
Taylor—Green flow corresponds to a superposition of four
0 0 0 elementary modes in spectral space:
k(0)=eg, grows unboundedly which means that it will be " 0 .
damped by viscosity eventually and0)=e, will tend to Us(Dy,by,0)=Un(by, ~by,0)
zero. Therefore, we will only determine the growth rate of ——U.(-b..b..0
.. . X( X1 My )
a(t) for the cas&k(0)=k(t) =e,. The matrix involved in(3)
becomes _ A by
=—=Uy(=by,=by,00=+ = 55—,
Ab.b 41 bj+by
~ 72 0 0 ~ -
oKk bl +bj U,(by,by,00=—U(b,,—by,0)
——— | AX)= Ab,b ) -
( kP '7)/(X’ e e =~ Uy(~b.b,,0
bi+b§
b
0 0 0 = — X
=Uy(~by—b,0=- 3, be+by’

This shows that, whatever the value®f the cell-bounding
streamlines are unstable with amplification rate The sum ovet in the linear operator involved on the right-
=Abxby/(b)2(+ b§)= 5. For the cas€=1, o=6=1.25 and hand side of Eq(5) reduces therefore to four terms. Besides,
with E=2, o= 6=1.00. as pointed out by Baylﬂz? the eigenmodes can be decom-
posed into two independent subsets: the even modes where
m+n is even and the odd modes where-n is odd. This
comes from the fact that each modm, () is only coupled

In this section we will perform a “classical” viscous with the four neighboring modeén—1, n—1), (m—1, n
linear stability analysis. The Reynolds number is defined o+ 1), (m+1, n—1), (m+1, n+1).

B. Viscous linear stability theory

the circulationI" over each cell:I'=¢uds=Ad,d, 72 We represent this linear operator with a matrix, in which
which implies that Re-I'/v=Ad,d, (7). each component corresponds to a mode interaction. Thanks

to viscosity, we truncate that matrix and solve the
1. Method

eigenvalue/eigenvector problem numerically. When looking
We consider a 3-D periodic flow, with periods for the odd modes eigenvalues on a DEC alpha server 8400
(dy,dy,d;). The velocity field and pressure can therefore be5/300 with 8 processors, it takes 19 h of computation when

expressed as follows: the matrix size is 65606560, which corresponds te 40
=m=40 and—40<n=<40.
ux,y,z,t)= >, G(m,n,p,t)e!(mbx+nby+pbyz) The eigenvalues and eigenvectdrsg (k)] found are
m.n.p such thatu(t)=e’'tu(k) is a solution of the linearized
Navier—Stokes equatior(s).
p(X,y.Z,t)=mEnp p(m,n,p,t)e! (Mbx+nby+pbs2) The basic flow is linear with respect #. This means

that the eigenvalues are proportionalA@nd that the struc-
Let k(m,n,p) = (ky,ky,k;)=(mb,,nb,,pb,). The viscous ture of the eigenmodes do not dependAanThus, an eigen-
incompressible Navier—Stokes equations read: mode developing on a viscous decaying Taylor—Green flow
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remains an eigenmode for all time, the amplification rate »  General Case
decreasing a#\(t). This property will be used in Sec. Ill. O Slip Condition

2. Problems connected with truncation of the Fourier &4 2r

modes

As we solve the linear problem with a finite number of i a
Fourier modes, we have to be careful with the interpretation ® .k A
of the eigenvalues/eigenvectors given by this numerical (:bT‘—“gT —
method. An eigenvalue/eigenvector couple is valid only if ® | r
the eigenvector concentrates all of its energy in the modes L
with small wave numberr,n). For example, suppose that [
we represent the modes verifyirgd0<m, n<40. With our ®a 2f
numerical method we will obtain 6560 couples of ]
eigenvalues/eigenvectors. Now, we have to look at the spec-
trum of each eigenvector. A rough criteria of validity in this General case
case could be: 99% of the energy should be contained in the O Slip condition
modes verifying—20<=m, n<20, i.e., in the lowest part of 6 |
the handled spectrum. If not, part of the energy lies in the A 2}
upper part of the spectrum and therefore truncation invali- i
dates the corresponding eigenvector. Hence, for each calcu- ® LI
lation, we have to check the validity of each couple care- ® * e.f
fully. Cn o . . . R

Finally, this truncation method only gives a few of the -0.1 0 0.1 G
valid eigenvalues/eigenvectors. In the following, we suppose ® . ©o* |
that this set contains the most amplified modes that we @ L
can conclude whether the flow is stable or)ndtis is true [
when viscosity is large, since viscosity stabilizes the short- * 2r
wave perturbations. In Secs. 11 B 3 and Il B 5, this argument ]
holds. But, in Sec. Il B 6, we perform an inviscid stability FIG. 5. Odd and even mode eigenvalues in the,¢;) plane. Cas€=1,
analysis. In this case, viscosity cannot be put forward andx=1,dy=1,d,=0.5625, Re=2500.
nothing enables us to state that the calculated set of valid
modes includes the most unstable ones.

»>

ﬁx(—m,n,p)= _ax(m!n!p)a

. Th E=1 0 v
3. The case uy(—m,n,p)=+uy(m,n,p),

The numerical problem was solved for the following set . N
of parametersE=1, d,=1, d,=1, d,=0.5625, Re=2500. U(—m,n,p)=+Uz(m,n,p), ®
The vertical vyavele_ngthz= 0.5625 corresponds to thg most U, (m, —n,p) =+ U, (m,n,p),
unstable configuration. The eigenvalues are plotted in Fig. 5 _ R
for both odd and even modgsymbols labeled “general uy(m,—n,p)=—uy(m,n,p),
case’). Each symbol represents one eigenvalue in the
(o, ,07) plane. The striking fact here is that the flow is un-
stable: There are four unstable odd modes and three unstable
even modes. The structure of a typical unstable eigenmode is

U,(m,—n,p)=+0,(m,n,p).

given in Fig. 6 where we have shown the norm of the hori- mIEJer‘(/D%I: 01.2 0?6

zontal vorticity in the planex,y). All these eigenmodes are 0.5¢ Y

localized on the planes separating the cells, where as shown

before with short wave asymptotics, streamlines are unstable.

Therefore, the instability is due to the hyperbolic stagnation

points.
However, this is a spurious phenomenon when studying >0 —m—2=

instabilities occurring in the center of the vortices. Hence, we |

will now try to eliminate this “hyperbolic” instability.

4. Slip conditions -0._%?—* — 6 : °6'. 5
In a recent papett Lundgren suggests imposing the fol- X

lowing consistent set of symmetry conditions in spectralgg_g, Isow?+ w? in a cutz=cte of a typical unstable eigenfunction. Case

space for all (n,n,p): E=1,dy=1,d,=1, d,=0.5625, Re-2500.
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Level 1 2 3 4 5 6 7 8
A General case u)f+o)f: 0.01 005 0.1 02 04 06 08 1

[e] Slip condition

0.5
® © "r //2—\; I =2=3
1+ 0@:
A > or N
| 4 A TS FA\
A . @A I \@ \, C@ 5
. Ol 1 S— _ X 1 1
LD 0.2 0573 ) 1
a * % 1 . r X
A
A
[ IEevgl12345678
1} 0Odd modes OO 0.01 005 01 02 04 06 08 1
e | 05—y ——
- N
(S Qs\ A =0
3/ Al o)
S — N =
A General case > OF =
(e} Stip condition oy e Ahe:
. =)
L5 & INEED)
- -0.5 = L et
.1 “ 2 !
X
® ® a
@ 4 FIG. 8. Upper plot: iso-@iJr wf,) in az=cte cut of a typical eigenfunction
aq i A of the slip-condition subsef‘elliptic” mode ). Lower plot: the same for a
i — 0'2 — typical function not belonging to that subsghyperbolic” mode). Case
L. 4 £ o, E=2,d,=2,d,=1,d,=1.843 75, Re-2500.
@ I @ .
s qf tices. On the other hand, in the lower plot of Fig. 8, we can
a s see that the vorticity on the removed eigenmodes is also very

strong on these planes. In conclusion, the slip conditions are
FIG. 7. Odd and even mode eigenvalues in tbe,¢;) plane. Cas&=2, an efficient means to eliminating hyperbolic instability

d,=2,dy=1,d,=1.843 75, Re-2500. modes in Taylor—Green flows.
The spectral structure of the remaining unstable odd
mode is given in Table |. For each Fourier mode

We are going to show that these symmetry conditionsa(m n)e! (MBxnby+b2) the first and second columns give
stabilize the flowE=1, therefore removing the spurious un- \yave numbersn andn. the third to fifth columns givel
stable hyperbolic modes. . . normalized so thats,, ,|d(m,n)|?>=1, the sixth column

It can be shown that the viscous Navier—Stokes €dU35ives the percentage of enerfy(m,n)|?, and the last col-

tions conserve these symmetries and that the correspondifignn, the cumulative sum of these percentages. It is seen that
eigenvalues just form a subset of the general case eigenval-

ues.
These conditions imply that the flow slips along the TABLE I. Spectral structure of the most amplified odd mode. For each
planes separating the vortices,=0 on the planesx Fourier mode, the first and second columns give the wave numbarsin,

=n.d/2 Vn. andu.=0 on the planes=n.d./2 Vn. . the third to fifth columns gively, Oy, {,, the sixth column gives the
X=X X Y P y=nydy Y percentage of energy in the correspondingr() mode, and the last column

W_hen ap_plying t_he_‘se slip qond_itions, the flow _With gives the cumulative sum. Cade=2, d,=2, d,=1, d,=1.84375, Re
E=1 is stabilized as it is shown in Fig. 5 where the circles=2500.

represent the eigenvalues that verify these slip conditions.

Energy fraction Energy sum

m n U Uy u, (%) (%)
5. The case E =2

o N -1 0 0312 0 0.287 17.98 17.98
We now look at the elliptic instability that should de- 1 o0 -0312 o0 0.287 17.98 35.96
velop for the cas&=2. Calculations are performed forthe 0 1 0 -0.139  0.256 8.45 44.41
cased,=2, d,=1, d,=1.843 75, Re-2500. Again, the ver- 2 ‘; 8246 %%3% 00623516 68:;5 5592~3816
t!cal size of the .box correspondg to t_he most unstable CON- 1 _5 _0246 0053 —0.031 6.45 65.77
figuration. The_e|genvalues are given in Fig. 7.. !t canbeseen, 5 _(g246 -0.053 -0.031 6.45 72.92
that the flow is unstable. Yet the slip condition removes 1 2  0.246 —0.053 —0.031 6.45 78.67

seven out of eight unstable odd modes and five out of sevenr2 1 0.113  0.164 —0.093 4.83 83.5
unstable even modes. The typical structure of the remaining ; 11 *g-ﬁg 00-11:;1 ’8-833 i-gg gg-f‘;

unstable modes is given in the upper plot of Fig. 8: The_2 ' ' ' ' ’

_ 2 -1 0.113 -0.164 —0.093 4.83 98.0
horizontal vorticity is concentrated on the vortex centers and... ...
there is very little vorticity on the planes separating the vor
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FIG. 9. Vertical vorticity w, (_u_pper‘plo) and ‘hor|zontal vorticity (ux,_wy) _ T
(lower ploY of the most amplified eigenfunction. To be compared with Figs. 0 15 10 15 20 25

2 and 3 of Waleffe's unbounded elliptic instability. CaBe-2, d,=2, d,

=1,d,=1.843 75, Re2500.
FIG. 10. Odd and even mode eigenvalues in tkg ;) plane. An arrow
shows the casd,=1.843 75. Cas&=2, d,=2, dy=1, Re=2500.

12 Fourier modes contain 98% of the energy of the eigenwe can see in thed, ,o;) plane two eigenvalues collapsing
mode. The involved Fourier modes are all long wavelengtfand giving rise to the most amplified odd mode.

(jm|<2 and|n|<2). An important consequence of this re-

sult is that very little resolution is needed in spectral space t®. Link between shortwave asymptotics and classical
represent the growing mode when performing the DNS infinear stability theory

Sec. lll. The shortwave asymptotics describe inviscid shortwave
The corresponding horizontal and vertical vorticity in instabilities. The results were given in Sec. Il A. In order to

physical space are given in Fig. 9. These two pictures can béompare the theory with the classical linear theory used in

compared with Figs. 2 and 3 of Waleffe’s papéfhe struc-  this section, we solve the eigenvalue/eigenvector problem

ture of the mode in each cell is roughly the same as thajith the following set of parametersd,=2, d,=1, d,

obtained in homogeneous elliptic flows: The vertical vortic- =0.25, »=0, which means that Rex. The periodsd, and

ity forms a dipole whose axis is aligned with the stretchingdy correspond to the usual basic fld&= 2. The periodd, is

direction and the horizontal vorticity is oriented in the samesmaller compared to the preceding cases in order to describe
direction. Furthermore, for both cases the mode is stationary.

The amplification rater=0.2414 has to be compared with et
0.3825, obtained both with the correspondig 2 inviscid ’ \L 1
homogeneous case and with inviscid shortwave asymptotics [

applied in the center of the vortdsee Figs. 3 and)4 This \

discrepancy is mainly due to the fact that the vertical wave K

numberk,=27x/d,=3.41 is not asymptotically largésee &— § _>
Sec. 11 B §. Also, one could invoke viscosity but viscosity " T ¢ ’ "
remains weak for our case where=R2500. 02 -01 ] 0.1 0.2

e 000
Q

In Fig. 10 we give a plot of the ten most amplified ei-
genvalueso,—of the slip-condition subset—for both odd

--0.1
and even modes versus vertical wave numyerThe arrow T l --0.2
k=1

locates the vertical wave number corresponding dp
=1.843 75, used until now for the=2 case. These intricate
plots rep_resent the linear mode interactions 'n_th|5 _ﬂOV\{- FigFIG. 11. Magnification of thed;, ,;) plane in the area shown by the circle
ure 11 gives a zoom on the area shown by a circle in Fig. 10n Fig. 10. Cas€E=2, d,=2, d,=1, Re=2500.
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TABLE II. Spectral structure of the most amplified odd mode. The first and
second columns give the wave numbjrs and|n|, the third column gives

G . the percentage of energy in the correspondimg (n|) modes, and the last
4k ® column gives the cumulative sum. CaBe=2, d,=2,d,=1, d,=0.25, Re
=00,
A
2F ® ® |m| [n| Energy fraction(%) Energy sum%)
. . . 9 2 5.6 5.6
o= L L ) 9 4 4.7 10.3
P 025, 03 235 7 6 42 145
. r 5 8 35 18.0
of ®
2r ® 7 4 3.4 21.4
[ . 10 1 3.2 24.6
4F ® 0dd modes 1 10 3.0 27.6
[ 10 3 3.0 30.6
14 1 0.3 96.5
A General case .
o] Slip condition 14 3 0.2 98.6
& @
ab . 7 12 0.1 99.0
: ° ..
2F a A
[ ® ®
8 ——— L -l — turbing, but the following conclusion still holds: We have
? 0254 03 @06'35 discovered an inviscid elliptic mode, whose amplification
ok a a ' rate is close to the value predicted by shortwave asymptotics.
[ ® The matching will be more exact if we use an even shorter
af .
| ®

FIG. 12. Odd and even mode Eigenvalues in the,p;) plane. Cas&
=2,d,=2,d,=1,d,=0.25,»=0.

perturbations with shorter wavelengths. The general case ei-
genvalues have been computed with a spectral resolution of
—40=m, n<40. The slip-condition eigenvalues have been
computed with an even higher resolution to check the quality
of the results of the general case eigenvalues. The calculation
has been performed to account for the following modes:
—80=m, n=<80. This was possible because of the new sym-
metries involved in the problem. The size of the matrix is
approximately the same as in the previous calculation.

Results are given in Fig. 12. The amplification rate of the
most unstable mode is 0.3500, obtained with both calcula-
tions. This is close to the 0.3825 amplification rate predicted
with shortwave asymptotics.

The spectral structure of the most unstable odd mode,
part of which is given in Table Il, shows that 99% of the
energy is concentrated in then(n) modes verifying— 14
=m, n<14. The corresponding horizontal and vertical vor-
ticity in physical space are given in Fig. 13. We can see that
it is an elliptic mode. The picture given here is very close to
the unbounded homogeneous case.

As mentioned in Sec. Il B 2, we have to be cautious with
the interpretation of the results. Since viscosity has been set
to zero, shortwave perturbations are not stabilized. There-
fore, the pictures in Fig. 12 may not be exhaustive: There

03 04 ~"05 06 07
X

: : : FIG. 13. Vertical vorticityw, (upper ploj and horizontal vorticity {, , )
may be an eigenvalue/eigenvector coufdich we cannot (lower plop of the most amplified odd modén upper right cell. To be

describe with the spectral reSOlUti(_)n. emplo}(e@hich is ~ compared with Figs. 2 and 3 of Waleffe’s unbounded elliptic instability.
even more unstable than those exhibited. This is a little discaseE=2, d,=2, d,=1, d,=0.25,»=0.
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0.39 300
; (s)i‘?nzv.’;aisethaes valu;e predicted by » ;:;akl)r_a reen
o3sf~_ in the centermﬁeo\'lgiioes. 250 T N Perturbation
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FIG. 14. Amplification rate of the most unstable odd mode of the slip 2\‘\“—\*
condition subset vs vertical wavelength. CaseE=2, d,=2,d,=1, » 10 /,
0. 1: Y
>.10 7
wavelengthd,. To prove this statement, we have done a o /
series of calculations with the vertical wavelengthset to 510"g y 4
d,=0.050.1,0.15,0.2,0.250nly the slip condition modes ; /
have been calculated because of memory constraints. We 10.1' / Igﬁc'"_ﬁreen L
focus on the most amplified odd mode. The smaller the value A [ [—— Perturbation
of d,, the more spectral resolution we need: For example, in '2?/ ] l
the cased,=0.1, we need the wave numbers verifying LA T R R
—29<m,n=<29 to store 99% of the energy of the mode. We Time
checked that for each value df, the mode is elliptic, i.e.,
the mode is localized on the center of the vortices and the 1; 1"~
structure of the horizontal and vertical vorticity is the same 0.8F <
as in Waleffe? The corresponding amplification rate versus 065 \
the vertical wavelength, is given in Fig. 14. A straight line Cl i \ \\
was fitted to the observations and the extrapolation of this 304 \‘\
line to d,=0 gives o,=0.3825, which is the same as the ‘So.of \
value predicted by shortwave asymptotics in the center of the § E \
vortices(this extrapolation method has already been used by z 0; N S
Bayly'®). This proves that shortwave asymptotics are totally 02K T __ g{;;’;gf;’?,o(,,,qo, v
consistent with classical linear theory. 04 I T !
'110' = 'zlo' iy
I1l. THE NONLINEAR REGIME Time
A. The code FIG. 15. Upper plot: total energfsolid line), Taylor Green energydotted

. . line), and perturbation energylashed lingvs time. Middle plot: the same
We use a Fourier spectral code that solves the incomy, jog scale. Lower plot: normalized amplification rate(t)/o-(0) (solid

pressible Navier—Stokes equatidd$. The nonlinear term is line). The dashed line is the same but rescaled to take account for viscous
directly computed in spectral space by evaluation of convodecay of the basic flow. Case=2, d,=2, d,=1, d,=1.84375, Re
lution sums. Time advancement is achieved with a compacf2500'

third-order Runge—Kutta scheme. Time-discretization and

truncation(a finite number of Fourier modes are usede

the only approximations achieved. Viscosity is used throughS 150, —55<k,=55. This is certai.nly' not sufficient when a
. Skt e e - strong cascade develops, but this is not the case and the
the damping terne to filter the shortwave contribution

lying outside the calculation domain calculation is valid for a long time.
ying ' We initialize the calculation with the four Taylor—Green

modes withAy= 2.5 plus the most amplified odd mode. The

structure of this mode and its theoretical amplification rate is
A calculation was performed witk=2, d,=2,d,=1,  given by the linear stability analysis. For the present case:

and d,=1.843 75. The Reynolds number is 2500. The vis-o,=0.2414.

cous cutoff is given byk.= 1/y/v=70. The size of the calcu- The results of the calculations are given in Figs. 15 and

lation box is 25< 25X 17 which, thanks to the high symme- 16.

tries achieved in spectral space, enables us to represent the The two upper plots in Fig. 15 give the time evolution of

following modes:—24=m=<24, —24<n<24 and—16<p the total energy in the bofsolid line), the energy of the four

<16 or, in terms of wavelengths; 75<k,<75, — 150<k, modes that form the Taylor—Green flofdotted ling, and

B. Results for the case E=2
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T=0

T=17.5

T=22.5

T=27.5

FIG. 16. Time evolution of iso-vorticity surfaces.

the remaining energy called the perturbation enédgashed

D. Sipp and L. Jacquin

which was initially three orders of magnitude smaller than
the basic flow energy, undergoes a dramatic increase at the
expense of the basic flow. For example, at tilmve23, there

is as much energy in the perturbation as in the Taylor—Green
vortices. At timeT =30, there is nearly no energy any more
in the Taylor—Green vortices. The plot in log scales shows
that the instability is exponential: The initial slope of the
perturbation energy curv@ivided by two to transform en-
ergy growth rates into amplitude growth ratésexactly that
predicted by linear theorgwhich proves that our code works
well). The lower plot in Fig. 15 represents, in solid line, the
energy amplification ratéagain divided by twpnormalized

by the initial theoretical linear stability amplification rate.
This value is decreasing because viscosity is eroding the ba-
sic flow [remember that eigenvalues are proportional to
A(t)] and because of nonlinearities. In the lower plot, we
have also represented in a dashed line, a rescaled version of
the amplification rate: a(t)= o, (t)A(0)/

o, (0)A(t), whereA(t) is the value computed at tinte If
there were no nonlinearities, this quantity should be equal to
o (t)=1 for all time. As we can seej,t) is close to 1 for
T<20, which corresponds td&EP(t)/E™®(t)<1/3, where
EP(t) is the perturbation energy arl °(t) is the Taylor—
Green energy. This quantity then decreases drastically be-
cause of nonlinear effects: The energy of the perturbation is
of the same order of magnitude as the energy of the Taylor—
Green vortices.

The four plots of Fig. 16 represent time evolution of
iso-values of total vorticity in one cell. The initial elliptic
vortex (T=0) undergoes a sinusoidal instability € 17.5)
until the vortex encounters the cell-separating boundaries
(T=22.5 andT=27.5). The picture of the early stages of
that DNS(T=0 andT=17.9 is consistent with Leweke’s
shortwave instabilities observations in a vortex pair.

IV. CONCLUSION

We have achieved the linear stability analysis for the
two case€ =1 andE=2. A comparison between shortwave
asymptotics and classical linear stability theory has been
achieved. Although the domain of validity of the two theo-
ries is completely differentshort wavelength for shortwave
asymptotics and long wavelength for viscous classical linear
theory), this study reveals that they are consistent. Shortwave
asymptotics have proved that all closed streamline€ of
=1 flow are exponentially stable whereas the planes sepa-
rating each vortex are strongly unstable, € 6=1.25).
These results are consistent with the application of classical
linear theory. Imposing slip conditions enables us to elimi-
nate these unstable modes. For the cBse2, shortwave
asymptotics show that streamlines in the center of the vortex
are the most unstable with, =0.3825(these results are to-
tally consistent with Bayly’s homogeneolis=2 casg¢ and
that this amplification rate decreases when going outward.
The planes separating the vortices are also highly unstable

line). These two plots represent the same data, the first ifo, = 6=1.00). Again, we remove the “hyperbolic” un-
linear scale, the second in log scale. The total energy is destable modes in the classical linear theory by imposing slip
creasing because of viscosity. The perturbation energyonditions on these planes. The remaining most amplified
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